8 research outputs found

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Enhanced interpretation of newborn screening results without analyte cutoff values

    Get PDF
    Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusion: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%. © 2012 American College of Medical Genetics and Genomics

    Enhanced interpretation of newborn screening results without analyte cutoff values

    No full text
    Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusion: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%. © 2012 American College of Medical Genetics and Genomics

    Enhanced interpretation of newborn screening results without analyte cutoff values.

    No full text
    PURPOSE: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. METHODS: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. RESULTS: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. CONCLUSION: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project.

    No full text
    Purpose: To achieve clinical validation of cutoff values for newborn screening by tandem mass 215 spectrometry through a worldwide collaboration. Methods: Cumulative percentiles of amino 216 acids and acylcarnitines in dried blood spots of approximately 30 million normal newborns and 217 10,615 true positive cases are compared to assign clinical significance, which is achieved when 218 the median of a disease range is either >99%ile or <1%ile of the normal population. The cutoff 219 target ranges of analytes and ratios are then defined as the interval between the limits of the two 220 populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity 221 taking in consideration all available factors. Results: As of December 1, 2010, 129 sites in 45 222 countries have uploaded to the project website a total of 23,970 percentile data points, 558,168 223 analyte results of 10,615 true positive cases with 64 conditions, and 5,088 cutoff values. The 224 average rate of submission of true positive cases between December 1, 2008 and December 1, 225 2010 was 4.7 cases per day (3,418 cases). This cumulative evidence generated 91 and 23 high 226 and low target cutoff ranges, respectively. The overall proportion of cutoff values within the 227 respective target range was 43% (2,176/5,088). Conclusions: An unprecedented level of 228 cooperation and collaboration has allowed the objective definition of cutoff target ranges for 114 229 markers applied to newborn screening of rare metabolic disorders. This set of data could be used 230 as baseline for monitoring of future performance

    Enhanced interpretation of newborn screening results without analyte cutoff values

    No full text
    A collaboration among 157 newborn screening programs in 47 countries has lead to the creation of a database of 705,333 discrete analyte concentrations from 11,462 cases affected with 57 metabolic disorders, and from 631 heterozygotes for 12 conditions. This evidence was first applied to establish disease ranges for amino acids and acylcarnitines, and clinically validate 114 cutoff target ranges. Objective: To improve quality and performance with an evidence-based approach, multivariate pattern recognition software has been developed to aid in the interpretation of complex analyte profiles. The software generates tools that convert multiple clinically significant results into a single numerical score based on overlap between normal and disease ranges, penetration within the disease range, differences between specific conditions, and weighted correction factors. Design: Eighty-five on-line tools target either a single condition or the differential diagnosis between two or more conditions. Scores are expressed as a numerical value and as the percentile rank among all cases with the condition chosen as primary target, and are compared to interpretation guidelines. Tools are updated automatically after any new data submission (2009- 2011: 5.2 new cases added per day on average). Main outcome measures: Retrospective evaluation of past cases suggest that these tools could have avoided at least half of 277 false positive outcomes caused by carrier status for fatty acid oxidation disorders, and could have prevented 88% of false negative events caused by cutoff 7 values set inappropriately. In Minnesota, their prospective application has been a major contributing factor to the sustained achievement of a false positive rate below 0.1% and a positive predictive value above 60%. Conclusions: Application of this computational approach to raw data could make cutoff values for single analytes effectively obsolete. This paradigm is not limited to newborn screening and is applicable to the interpretation of diverse multi-analyte profiles utilized in laboratory medicine. Abstract wor

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project

    Get PDF
    PURPOSE:: To achieve clinical validation of cutoff values for newborn screening by tandem mass spectrometry through a worldwide collaborative effort. METHODS:: Cumulative percentiles of amino acids and acylcarnitines in dried blood spots of approximately 25-30 million normal newborns and 10,742 deidentified true positive cases are compared to assign clinical significance, which is achieved when the median of a disorder range is, and usually markedly outside, either the 99th or the 1st percentile of the normal population. The cutoff target ranges of analytes and ratios are then defined as the interval between selected percentiles of the two populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity taking all available factors into consideration. RESULTS:: As of December 1, 2010, 130 sites in 45 countries have uploaded a total of 25,114 percentile data points, 565,232 analyte results of true positive cases with 64 conditions, and 5,341 cutoff values. The average rate of submission of true positive cases between December 1, 2008, and December 1, 2010, was 5.1 cases/day. This cumulative evidence generated 91 high and 23 low cutoff target ranges. The overall proportion of cutoff values within the respective target range was 42% (2,269/5,341). CONCLUSION:: An unprecedented level of cooperation and collaboration has allowed the objective definition of cutoff target ranges for 114 markers to be applied to newborn screening of rare metabolic disorders. © 2011 Lippincott Williams &amp; Wilkins
    corecore