7 research outputs found

    Association of the C allele of rs479200 in the EGLN1 gene with COVID-19 severity in Indian population: a novel finding

    No full text
    Abstract The present study investigated two single nucleotide polymorphisms (SNPs)—rs479200 and rs516651 in the host EGLN1/PHD2 gene for their association with COVID-19 severity. A retrospective cohort of 158 COVID-19 patients from the Indian population (March 2020 to June 2021) was enrolled. Notably, the frequency of C allele (0.664) was twofold higher than T allele (0.336) in severe COVID-19 patients. Here, we report a novel finding that the C allele of rs479200 in the EGLN1 gene imparts a high risk of severe COVID-19 (odds ratio—6.214 (1.84–20.99) p = 0.003; 9.421 (2.019–43.957) p = 0.004), in additive inheritance model (adjusted and unadjusted, respectively)

    Glutaredoxin1 Diminishes Amyloid Beta-Mediated Oxidation of F-Actin and Reverses Cognitive Deficits in an Alzheimer's Disease Mouse Model

    No full text
    Aims: Reactive oxygen species (ROS) generated during Alzheimer's disease (AD) pathogenesis through multiple sources are implicated in synaptic pathology observed in the disease. We have previously shown F-actin disassembly in dendritic spines in early AD (34). The actin cytoskeleton can be oxidatively modified resulting in altered F-actin dynamics. Therefore, we investigated whether disruption of redox signaling could contribute to actin network disassembly and downstream effects in the amyloid precursor protein/presenilin-1 double transgenic (APP/PS1) mouse model of AD. Results: Synaptosomal preparations from 1-month-old APP/PS1 mice showed an increase in ROS levels, coupled with a decrease in the reduced form of F-actin and increase in glutathionylated synaptosomal actin. Furthermore, synaptic glutaredoxin 1 (Grx1) and thioredoxin levels were found to be lowered. Overexpressing Grx1 in the brains of these mice not only reversed F-actin loss seen in APP/PS1 mice but also restored memory recall after contextual fear conditioning. F-actin levels and F-actin nanoarchitecture in spines were also stabilized by Grx1 overexpression in APP/PS1 primary cortical neurons, indicating that glutathionylation of F-actin is a critical event in early pathogenesis of AD, which leads to spine loss. Innovation: Loss of thiol/disulfide oxidoreductases in the synapse along with increase in ROS can render F-actin nanoarchitecture susceptible to oxidative modifications in AD. Conclusions: Our findings provide novel evidence that altered redox signaling in the form of S-glutathionylation and reduced Grx1 levels can lead to synaptic dysfunction during AD pathogenesis by directly disrupting the F-actin nanoarchitecture in spines. Increasing Grx1 levels is a potential target for novel disease-modifying therapies for AD

    Book of Abstracts of the 2nd International Conference on Applied Mathematics and Computational Sciences (ICAMCS-2022)

    No full text
    It is a great privilege for us to present the abstract book of ICAMCS-2022 to the authors and the delegates of the event. We hope that you will find it useful, valuable, aspiring, and inspiring. This book is a record of abstracts of the keynote talks, invited talks, and papers presented by the participants, which indicates the progress and state of development in research at the time of writing the research article. It is an invaluable asset to all researchers. The book provides a permanent record of this asset. Conference Title: 2nd International Conference on Applied Mathematics and Computational SciencesConference Acronym: ICAMCS-2022Conference Date: 12-14 October 2022Conference Organizers: DIT University, Dehradun, IndiaConference Mode: Online (Virtual

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore