295 research outputs found

    Binding by random bursts : a computational model of cognitive control

    Get PDF

    Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis

    Get PDF
    The role of the anterior cingulate cortex (ACC) in cognition has been extensively investigated with several techniques, including single-unit recordings in rodents and monkeys and EEG and fMRI in humans. This has generated a rich set of data and points of view. Important theoretical functions proposed for ACC are value estimation, error detection, error-likelihood estimation, conflict monitoring, and estimation of reward volatility. A unified view is lacking at this time, however. Here we propose that online value estimation could be the key function underlying these diverse data. This is instantiated in the reward value and prediction model (RVPM). The model contains units coding for the value of cues (stimuli or actions) and units coding for the differences between such values and the actual reward (prediction errors). We exposed the model to typical experimental paradigms from single-unit, EEG, and fMRI research to compare its overall behavior with the data from these studies. The model reproduced the ACC behavior of previous single-unit, EEG, and fMRI studies on reward processing, error processing, conflict monitoring, error-likelihood estimation, and volatility estimation, unifying the interpretations of the role performed by the ACC in some aspects of cognition

    Reward prediction error and declarative memory

    Get PDF
    Learning based on reward prediction error (RPE) was originally proposed in the context of nondeclarative memory. We postulate that RPE may support declarative memory as well. Indeed, recent years have witnessed a number of independent empirical studies reporting effects of RPE on declarative memory. We provide a brief overview of these studies, identify emerging patterns, and discuss open issues such as the role of signed versus unsigned RPEs in declarative learning

    Beyond trial-by-trial adaptation : a quantification of the time scale of cognitive control

    Get PDF
    The idea that adaptation to stimulus or response conflict can operate over different time scales takes a prominent position in various theories and models of cognitive control. The mechanisms underlying temporal variations in control are nevertheless poorly understood, which is partly due to a lack of appropriate empirical measures. Inspired by reinforcement learning models, we developed a method to quantify the time scale of control behaviorally, by computing trial-by-trial effects that go beyond the preceding trial. Briefly, we extended the congruency sequence effect from 1 trial to multiple trials into the past and quantified the influence of previous trials on current-trial performance as a function of trial distance. The rate at which this influence changes across trials was taken as a measure of the time scale of control. We applied the method to a flanker task with different conflict frequencies and volatility. Results showed that the time scale of control was smaller in rare-conflict and volatile contexts, compared to frequent-conflict and neutral contexts. This is in agreement with theories differentiating transient from sustained control. The method offers new opportunities to reveal temporal differences in control modes and can easily be applied to various empirical paradigms. (PsycINFO Database Recordstatus: publishe

    Stages of nonsymbolic number processing in occipitoparietal cortex disentangled by fMRI adaptation

    Get PDF
    The neurobiological mechanisms of nonsymbolic number processing in humans are still unclear. Computational modeling proposed three successive stages: first, the spatial location of objects is stored in an object location map; second, this information is transformed into a numerical summation code; third, this summation code is transformed to a number-selective code. Here, we used fMRI-adaptation to identify these three stages and their relative anatomical location. By presenting the same number of dots on the same locations in the visual field, we adapted neurons of human volunteers. Occasionally, deviants with the same number of dots at different locations or different numbers of dots at the same location were shown. By orthogonal number and location factors in the deviants, we were able to calculate three independent contrasts, each sensitive to one of the stages. We found an occipitoparietal gradient for nonsymbolic number processing: the activation of the object location map was found in the inferior occipital gyrus. The summation coding map exhibited a nonlinear pattern of activation, with first increasing and then decreasing activation, and most activity in the middle occipital gyrus. Finally, the number-selective code became more pronounced in the superior parietal lobe. In summary, we disentangled the three stages of nonsymbolic number processing predicted by computational modeling and demonstrated that they constitute a pathway along the occipitoparietal processing stream

    Unimodal and cross-modal prediction is enhanced in musicians

    Get PDF
    Musical training involves exposure to complex auditory and visual stimuli, memorization of elaborate sequences, and extensive motor rehearsal. It has been hypothesized that such multifaceted training may be associated with differences in basic cognitive functions, such as prediction, potentially translating to a facilitation in expert musicians. Moreover, such differences might generalize to non-auditory stimuli. This study was designed to test both hypotheses. We implemented a cross-modal attentional cueing task with auditory and visual stimuli, where a target was preceded by compatible or incompatible cues in mainly compatible (80% compatible, predictable) or random blocks (50% compatible, unpredictable). This allowed for the testing of prediction skills in musicians and controls. Musicians showed increased sensitivity to the statistical structure of the block, expressed as advantage for compatible trials (disadvantage for incompatible trials), but only in the mainly compatible (predictable) blocks. Controls did not show this pattern. The effect held within modalities (auditory, visual), across modalities, and when controlling for short-term memory capacity. These results reveal a striking enhancement in cross-modal prediction in musicians in a very basic cognitive task

    The time course of spatial attention shifts in elementary arithmetic

    Get PDF
    AbstractIt has been proposed that elementary arithmetic induces spatial shifts of attention. However, the timing of this arithmetic-space association remains unknown. Here we investigate this issue with a target detection paradigm. Detecting targets in the right visual field was faster than in the left visual field when preceded by an addition operation, while detecting targets in the left visual field was faster than in the right visual field when preceded by a subtraction operation. The arithmetic-space association was found both at the end of the arithmetic operation and during calculation. In contrast, the processing of operators themselves did not induce spatial biases. Our results suggest that the arithmetic-space association resides in the mental arithmetic operation rather than in the individual numbers or the operators. Moreover, the temporal course of this effect was different in addition and subtraction.</jats:p
    corecore