49 research outputs found

    Thermodynamic framework to assess low abundance DNA mutation detection by hybridization

    Get PDF
    The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine

    pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    Get PDF
    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst

    Computational study of HIV gp41 FP and Rev as novel antiretroviral targets

    No full text
    The human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS), a disease that to this day has resulted into more than 25 million deaths in the world. Despite the development of multiple antiretroviral drugs in the last twenty years, no effective vaccine or cure is currently available. Developing new drug classes with alternative mode of actions is a promising and innovative approach. Before the start of this PhD, a peptide inhibitor called VIRIP was discovered that binds to the N-terminal fusion peptide (FP) of gp41, an extracellular viral protein essential for fusion with human host cells and hence viral infectivity. A combined molecular dynamics (MD) simulation and specifically optimised binding free energy calculation approach was used to analyse the interactions between gp41 FP and the multiple VIRIP derivatives. Enhanced VIRIP derivatives were suggested and a selection was subsequently tested in cellulo. While the FP as target has been studied extensively in membrane and solution environments, its structure remained largely ambiguous to this day. Therefore, another goal was the characterisation of the FP in solution environments using atomistic MD simulations. Finally, another interesting antiviral target emerged during my research, namely the multimerisation process of the Rev protein. Interactions between individual Rev monomers were studied using the MD and binding free energy calculation protocol. The hot spot residues in each binding interface were revealed and their energy values were found to be in correlation with previous experimental measurements. It is expected that this information may guide the development of novel Rev specific antiretrovirals.status: publishe

    Computational Studies of the Active and Inactive Regulatory Domains of Response Regulator PhoP Using Molecular Dynamics Simulations

    No full text
    The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs.status: publishe

    Enhancing the Performance of DNA Surface-Hybridization Biosensors through Target Depletion

    No full text
    DNA surface-hybridization biosensors utilize the selective hybridization of target sequences in solution to surface-immobilized probes. In this process, the target is usually assumed to be in excess, so that its concentration does not significantly vary while hybridizing to the surface-bound probes. If the target is initially at low concentrations and/or if the number of probes is very large, and they have high affinity for the target, the DNA in solution may become depleted. In this paper we analyze the equilibrium and kinetics of hybridization of DNA biosensors in the case of strong target depletion, by extending the Langmuir adsorption model. We focus, in particular, on the detection of a small amount of a single-nucleotide "mutant" sequence (concentration c2) in a solution, which differs by one or more nucleotides from an abundant "wild-type" sequence (concentration c1 ≫ c2). We show that depletion can give rise to a strongly enhanced sensitivity of the biosensors. Using representative values of rate constants and hybridization free energies, we find that in the depletion regime one could detect relative concentrations c2/c1 that are up to 3 orders of magnitude smaller than in the conventional approach. The kinetics is surprisingly rich and exhibits a nonmonotonic adsorption with no counterpart in the no-depletion case. Finally, we show that, alongside enhanced detection sensitivity, this approach offers the possibility of sample enrichment, by substantially increasing the relative amount of the mutant over the wild-type sequence.status: publishe

    Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression

    No full text
    Patients with relapsing-remitting multiple sclerosis (RR-MS) show a suboptimal CD4(+)CD25(+) regulatory T cell (Treg) function, whereas no Treg alterations are observed in secondary progressive MS (SP-MS) patients. To clarify the difference in Treg activity between early and chronic disease stages in MS, we analyzed the functional capacity and homeostatic parameters of naive CD4(+)CD25(+)CD127(low)CD45RA(+) Tregs (nTregs) and their memory counterparts CD4(+)CD25(+)CD127(low) CD45RO(+) Tregs (mTregs) in untreated MS patients and healthy controls. Interestingly, whereas the suppressive capacity of FACS-sorted nTregs was impaired in both early and chronic MS patients, only the latter group showed a restored mTreg function. Consistent with this observation, chronic MS patients had increased numbers of mTregs as compared with age-matched early MS patients, whereas nTreg frequencies did not differ significantly. TCR excision circle numbers were reduced in nTregs of early MS patients, suggestive of a diminished nTreg thymic output. Moreover, a decreased number of CD31(+) mTregs were observed in early vs chronic MS patients, indicating that inflammatory processes drive the homeostatic turnover of mTregs during the early disease stage. Additionally, early MS patients showed a more restricted nTreg and mTreg TCR BV gene profile as compared with healthy controls and chronic MS patients. Finally, analysis of IFN-beta and glatiramer acetate-treated MS patients showed that these immunomodulatory drugs modify nTreg homeostasis. Taken together, this study provides strong evidence for a disturbed thymic nTreg development and function in MS patients. Moreover, memory Treg but not naive Treg homeostasis recovers during disease progression

    Natural Naive CD4 +

    No full text

    Mapping the binding interface between an HIV-1 inhibiting intrabody and the viral protein Rev.

    Get PDF
    HIV-1 Rev is the key protein in the nucleocytoplasmic export and expression of the late viral mRNAs. An important aspect for its function is its ability to multimerize on these mRNAs. We have recently identified a llama single-domain antibody (Nb190) as the first inhibitor targeting the Rev multimerization function in cells. This nanobody is a potent intracellular antibody that efficiently inhibits HIV-1 viral production. In order to gain insight into the Nb190-Rev interaction interface, we performed mutational and docking studies to map the interface between the nanobody paratope and the Rev epitope. Alanine mutants of the hyper-variable domains of Nb190 and the Rev multimerization domains were evaluated in different assays measuring Nb190-Rev interaction or viral production. Seven residues within Nb190 and five Rev residues are demonstrated to be crucial for epitope recognition. These experimental data were used to perform docking experiments and map the Nb190-Rev structural interface. This Nb190-Rev interaction model can guide further studies of the Nb190 effect on HIV-1 Rev function and could serve as starting point for the rational development of smaller entities binding to the Nb190 epitope, aimed at interfering with protein-protein interactions of the Rev N-terminal domain

    Mapping the binding interface between an HIV-1 inhibiting intrabody and the viral protein rev

    No full text
    HIV-1 Rev is the key protein in the nucleocytoplasmic export and expression of the late viral mRNAs. An important aspect for its function is its ability to multimerize on these mRNAs. We have recently identified a llama single-domain antibody (Nb190) as the first inhibitor targeting the Rev multimerization function in cells. This nanobody is a potent intracellular antibody that efficiently inhibits HIV-1 viral production. In order to gain insight into the Nb190-Rev interaction interface, we performed mutational and docking studies to map the interface between the nanobody paratope and the Rev epitope. Alanine mutants of the hyper-variable domains of Nb190 and the Rev multimerization domains were evaluated in different assays measuring Nb190-Rev interaction or viral production. Seven residues within Nb190 and five Rev residues are demonstrated to be crucial for epitope recognition. These experimental data were used to perform docking experiments and map the Nb190-Rev structural interface. This Nb190-Rev interaction model can guide further studies of the Nb190 effect on HIV-1 Rev function and could serve as starting point for the rational development of smaller entities binding to the Nb190 epitope, aimed at interfering with protein-protein interactions of the Rev N-terminal domain.status: publishe
    corecore