102 research outputs found

    High plasma arginine concentrations in critically ill patients suffering from hepatic failure

    Get PDF
    Objective: In physiological conditions, the liver plays an important role in the regulation of plasma arginine concentrations by taking up large amounts of arginine from the hepatic circulation. When hepatic failure is present, arginine metabolism may be disturbed. Therefore, we hypothesized high arginine plasma concentrations in critically ill patients suffering from hepatic failure. Design: We prospectively collected blood samples from a cross-section of intensive care unit patients. Setting: Surgical intensive care unit of a Dutch university medical center. Subjects: A total of 52 critically ill patients with clinical evidence of dysfunction of more than two organs were recruited. Measurements: Plasma arginine concentrations were determined by HPLC. We identified correlations of arginine concentrations with organ failure scores and laboratory variables by univariate and multiple regression analyses. Results: High plasma arginine concentrations were found in critically ill patients developing organ failure. Patients who were in the highest quartile of plasma arginine concentrations had significantly lower fibrinogen concentrations, higher lactic acid concentrations, and longer prothrombin time. Stepwise multiple regression analysis showed that concentrations of arginine were independently associated with the presence of hepatic failure (P = 0.03) and renal failure (P = 0.048). In addition, lactic acid proved to be an independent determinant of plasma arginine concentration (P = 0.014). Conclusions: Critically ill patients who suffer from hepatic failure have elevated plasma arginine concentrations. Additional arginine in the treatment of these patients can be harmful, and therefore should not be used as a standard nutritional regimen until further evaluation

    27. New echocardiogram index alternatives to MAPSE and TAPSE z-scores in children

    Get PDF
    BackgroundMitral annular plane systolic excursion (MAPSE), and tricuspid annular plane systolic excursion (TAPSE) are relatively load independent longitudinal left ventricle (LV) and right ventricle (RV) measurement in both adults and children. Normal paediatric values of MAPSE and TAPSE unlike adults are based on inconvenient z-scores. We hypothesize novel indexes of (LSI) LV longitudinal systolic index and (RSI) RV longitudinal systolic index are BSA, age, gender independent and nullifies the need for MAPSE and TAPSE z-scores.MethodsNormal echocardiograms were retrospectively reviewed from 2009 to 2011. Ejection fraction, LV dimensions, MAPSE, and TAPSE were determined. LSI and RSI were calculated using MAPSE and TAPSE divided by LV length. Echocardiogram indices were correlated. Regression analysis was done for BSA, age, and gender.ResultsTwo hundred and one patients had normal ejection fractions (67.3;±5.1%). Mean MAPSE 10.4;±3.3mm, z-score −0.07;±1.2, and LSI 0.20;±0.03; Mean TAPSE 17.4;±5.4mm, z-score 0.74;±1.7, and RSI 0.34;±0.06. LSI and MAPSE z-scores correlated, r=0.73, p<0.001. Age, gender, and BSA did not correlate with LSI. RSI and TAPSE z-scores correlated with r=0.76, p<0.001. Age influences RSI, R2=0.58, p value <0.001, BSA and gender does not. RSI, with age stratification, is significantly decreased less than 2months.ConclusionLSI obviates need for-MAPSE z scores. RSI offers an additional non TAPSE z-score method to evaluate RV function, but does not nullify age effect. RSI, especially in the first two months is decreased

    N-acetylcysteine reduces oxidative stress in sickle cell patients

    Get PDF
    Oxidative stress is of importance in the pathophysiology of sickle cell disease (SCD). In this open label randomized pilot study the effects of oral N-acetylcysteine (NAC) on phosphatidylserine (PS) expression as marker of cellular oxidative damage (primary end point), and markers of hemolysis, coagulation and endothelial activation and NAC tolerability (secondary end points) were studied. Eleven consecutive patients (ten homozygous [HbSS] sickle cell patients, one HbSβ0-thalassemia patient) were randomly assigned to treatment with either 1,200 or 2,400 mg NAC daily during 6 weeks. The data indicate an increment in whole blood glutathione levels and a decrease in erythrocyte outer membrane phosphatidylserine exposure, plasma levels of advanced glycation end-products (AGEs) and cell-free hemoglobin after 6 weeks of NAC treatment in both dose groups. One patient did not tolerate the 2,400 mg dose and continued with the 1,200 mg dose. During the study period, none of the patients experienced painful crises or other significant SCD or NAC related complications. These data indicate that N-acetylcysteine treatment of sickle cell patients may reduce SCD related oxidative stress

    Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine are associated with retinal microvascular abnormalities: the Hoorn Study

    Get PDF
    A B S T R A C T The aim of the present study was to investigate the relationship between homocysteine and homocysteine metabolism components and retinal microvascular disorders in subjects with and without Type 2 diabetes. In this population-based study of 256 participants, aged 60-85 years, we determined total plasma homocysteine, SAM (S-adenosylmethionine) and SAH (S-adenosylhomocysteine) in plasma and erythrocytes, total folate in serum and erythrocytes, 5-MTHF (5-methyltetrahydrofolate), and vitamins B12 and B6. Participants were examined ophthalmologically by means of indirect funduscopy and two-field 45 • fundus photography, and were graded for retinopathy and retinal sclerotic vessel abnormalities. A computer-assisted method was used to measure retinal vessel diameters. Total plasma homocysteine was inversely associated with retinal arteriolar diameters {standardized β, − 0.20 [95 % CI (confidence interval), − 0.33 to − 0.07]} or a decrease of 3.78 μm CRAEs (central retinal arteriolar equivalents) per 1 S.D. increase in homocysteine level (= 4.6 μmol/l). In addition, the SAM/SAH ratio in plasma was inversely associated with retinal sclerotic vessel abnormalities and retinopathy [odds ratios, 0.61 (95 % CI, 0.39-0.96) and 0.50 (95 % CI, 0.30-0.83) per 1 S.D. respectively]. The associations were independent of age, sex, glucose tolerance status, other homocysteine metabolism components and cardiovascular risk factors. In conclusion, the results of the present study support the concept that total plasma homocysteine and a low SAM/SAH ratio in plasma, which may reflect reduced transmethylation reactions, may contribute to the pathogenesis of (retinal) microangiopathy

    Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine are associated with retinal microvascular abnormalities: the Hoorn Study

    Get PDF
    The aim of the present study was to investigate the relationship between homocysteine and homocysteine metabolism components and retinal microvascular disorders in subjects with and without Type 2 diabetes. In this population-based study of 256 participants, aged 60-85 years, we determined total plasma homocysteine, SAM (S-adenosylmethionine) and SAH (S-adenosylhomocysteine) in plasma and erythrocytes, total folate in serum and erythrocytes, 5-MTHF (5-methyltetrahydrofolate), and vitamins B12 and B6. Participants were examined ophthalmologically by means of indirect funduscopy and two-field 45° fundus photography, and were graded for retinopathy and retinal sclerotic vessel abnormalities. A computer-assisted method was used to measure retinal vessel diameters. Total plasma homocysteine was inversely associated with retinal arteriolar diameters {standardized β, -0.20 [95% CI (confidence interval), -0.33 to - 0.07]} or a decrease of 3.78 μm CRAEs (central retinal arteriolar equivalents) per 1 S.D. increase in homocysteine level (= 4.6 μmol/l). In addition, the SAM/SAH ratio in plasma was inversely associated with retinal sclerotic vessel abnormalities and retinopathy [odds ratios, 0.61 (95% CI, 0.39-0.96) and 0.50 (95% CI, 0.30-0.83) per 1 S.D. respectively]. The associations were independent of age, sex, glucose tolerance status, other homocysteine metabolism components and cardiovascular risk factors. In conclusion, the results of the present study support the concept that total plasma homocysteine and a low SAM/SAH ratio in plasma, which may reflect reduced transmethylation reactions, may contribute to the pathogenesis of (retinal) microangiopathy. © The Authors

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    ADMA metabolism and clearance

    No full text

    Simultaneous analysis of retinol, all-trans- and 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in plasma by liquid chromatography using on-column concentration after single-phase fluid extraction

    No full text
    A reversed-phase high-performance liquid chromatographic method for the simultaneous analysis of retinol, all-transretinoic acid, 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in human plasma and cell culture medium is described. Sample preparation involves precipitation of proteins and extraction of retinoids with 60% acetonitrile. After centrifugation, the acetonitrile content of the supernatant is reduced to 45%, allowing on-column concentration of analytes. Injection volumes up to 2.0 ml (equivalent to 0.525 ml of sample) can be used without compromising chromatographic resolution of all-trans-retinoic acid and 13-cis-retinoic acid. Retinoids were stable in this extract and showed no isomerization when stored in the dark in a cooled autosampler, allowing automated analysis of large series of samples. Recoveries from spiked plasma samples were between 95 and 103%. Although no internal standard was used, the inter-assay precision for all retinoids was better than 6% and 4% at concentrations of 30 nM and 100 nM, respectively. The method is a valuable tool for the study of cellular metabolism of all-trans-retinoic acid, as polar metabolites of this compound can be detected with high sensitivity in cell culture media
    corecore