759 research outputs found

    Territorial patterns and relations in Sweden

    Get PDF
    The content of the following overview is a summary of research results from different thematic applied research projects under the ESPON 2020 programme. As a consequence, most indicators and analyses are not based on most recent data but represent the data availability at the time when the research was undertaken. Only in a few cases, for some rather basic indicators that could easily be reproduced, more up-to-date information was used.It is therefore important to note that this overview is mainly a collection of available findings with different time stamps and not an up-to-date, comprehensive analysis. Its main goal is to showcase the wide range of ESPONresearch and, by zooming-in on a specific country, to raise interest for the scientific results at a more national and even regional scale

    Investigating dye performance and crosstalk in fluorescence enabled bioimaging using a model system

    Get PDF
    Detailed imaging of biological structures, often smaller than the diffraction limit, is possible in fluorescence microscopy due to the molecular size and photophysical properties of fluorescent probes. Advances in hardware and multiple providers of high-end bioimaging makes comparing images between studies and between research groups very difficult. Therefore, we suggest a model system to benchmark instrumentation, methods and staining procedures. The system we introduce is based on doped zeolites in stained polyvinyl alcohol (PVA) films: a highly accessible model system which has the properties needed to act as a benchmark in bioimaging experiments. Rather than comparing molecular probes and imaging methods in complicated biological systems, we demonstrate that the model system can emulate this complexity and can be used to probe the effect of concentration, brightness, and cross-talk of fluorophores on the detected fluorescence signal. The described model system comprises of lanthanide (III) ion doped Linde Type A zeolites dispersed in a PVA film stained with fluorophores. We tested: F18, MitoTracker Red and ATTO647N. This model system allowed comparing performance of the fluorophores in experimental conditions. Importantly, we here report considerable cross-talk of the dyes when exchanging excitation and emission settings. Additionally, bleaching was quantified. The proposed model makes it possible to test and benchmark staining procedures before these dyes are applied to more complex biological systems

    Creating infinite contrast in fluorescence microscopy by using lanthanide centered emission

    Get PDF
    The popularity of fluorescence microscopy arises from the inherent mode of action, where the fluorescence emission from probes is used to visualize selected features on a presumed dark background. However, the background is rarely truly dark, and image processing and analysis is needed to enhance the fluorescent signal that is ascribed to the selected feature. The image acquisition is facilitated by using considerable illumination, bright probes at a relatively high concentration in order to make the fluorescent signal significantly more intense than the background signal. Here, we present two methods for completely removing the background signal in spectrally resolved fluorescence microscopy. The methodology is applicable for all probes with narrow and well-defined emission bands (Full width half-maximum < 20 nm). Here, we use two lanthanide based probes exploiting the narrow emission lines of europium(III) and terbium(III) ions. We used a model system with zeolites doped with lanthanides immobilized in a polymer stained with several fluorescent dyes regularly used in bioimaging. After smoothing the spectral data recorded in each pixel, they are differentiated. Method I is based on the direct sum of the gradient, while method II resolves the fluorescent signal by subtracting a background calculated via the gradient. Both methods improve signal-to-background ratio significantly and we suggest that spectral imaging of lanthanide-centered emission can be used as a tool to obtain absolute contrast in bioimaging

    Predictors of long time survival after lung cancer surgery. A retrospective cohort study.

    Get PDF
    Background: There have been few reports regarding long time survival after lung cancer surgery. The influence of age and pulmonary function on long time survival is still not fully discovered. Some reports suggest that hospitals with a high surgical volume have better results. The aim of this study was to evaluate lung cancer surgery performed in a county hospital in terms of 30 days mortality, complications and predictors of long time survival. Methods: All patients operated with non-small cell lung cancer in the period 1993–2006 were reviewed, and 148 patients were included in the study. 30 days mortality and complications were analyzed by univariate analysis. Kaplan Meier plots were performed to display some of the univariate variables. Cox regression analysis was performed to find Hazard Ratios (HR) that predicted long time survival in univariate and multivariate analysis. Results: The overall 30 days mortality rate was 2.7%, whereas 36.3% had one or more complications after surgery. The median survival time was 3.4 years. In multivariate Cox regression analysis advanced preoperative stage predicted reduced long time survival with HR (95%CI) 1.63 (0.92, 2.89) and 4.16 (1.92, 9.05) for patients in stage IB and II-IV respectively, when compared to patients in stage IA. Age ≥ 70 years and FEV1<80% predicted reduced long time survival with HR (95%CI) 2.23 (1.41, 3.54) and 1.93 (1.14, 3.28) respectively, compared to age<70 years and FEV1 ≥ 80%. Conclusion: Thirty days mortality and complication rate showed that lung cancer surgery can be performed safely in a county hospital with experienced thoracic surgeons. Early preoperative stage, age below 70 years and normal pulmonary function predicted long time survival.publishedVersio
    • …
    corecore