1,822 research outputs found

    Restricted maximum-likelihood method for learning latent variance components in gene expression data with known and unknown confounders

    Get PDF
    Random effect models are popular statistical models for detecting and correcting spurious sample correlations due to hidden confounders in genome-wide gene expression data. In applications where some confounding factors are known, estimating simultaneously the contribution of known and latent variance components in random effect models is a challenge that has so far relied on numerical gradient-based optimizers to maximize the likelihood function. This is unsatisfactory because the resulting solution is poorly characterized and the efficiency of the method may be suboptimal. Here we prove analytically that maximum-likelihood latent variables can always be chosen orthogonal to the known confounding factors, in other words, that maximum-likelihood latent variables explain sample covariances not already explained by known factors. Based on this result we propose a restricted maximum-likelihood method which estimates the latent variables by maximizing the likelihood on the restricted subspace orthogonal to the known confounding factors, and show that this reduces to probabilistic PCA on that subspace. The method then estimates the variance-covariance parameters by maximizing the remaining terms in the likelihood function given the latent variables, using a newly derived analytic solution for this problem. Compared to gradient-based optimizers, our method attains greater or equal likelihood values, can be computed using standard matrix operations, results in latent factors that don't overlap with any known factors, and has a runtime reduced by several orders of magnitude. Hence the restricted maximum-likelihood method facilitates the application of random effect modelling strategies for learning latent variance components to much larger gene expression datasets than possible with current methods.Comment: 15 pages, 4 figures, 3 supplementary figures, 19 pages supplementary methods; minor revision with expanded Discussion sectio

    Restricted maximum-likelihood method for learning latent variance components in gene expression data with known and unknown confounders

    Get PDF
    Random effects models are popular statistical models for detecting and correcting spurious sample correlations due to hidden confounders in genome-wide gene expression data. In applications where some confounding factors are known, estimating simultaneously the contribution of known and latent variance components in random effects models is a challenge that has so far relied on numerical gradient-based optimizers to maximize the likelihood function. This is unsatisfactory because the resulting solution is poorly characterized and the efficiency of the method may be suboptimal. Here, we prove analytically that maximum-likelihood latent variables can always be chosen orthogonal to the known confounding factors, in other words, that maximum-likelihood latent variables explain sample covariances not already explained by known factors. Based on this result, we propose a restricted maximum-likelihood (REML) method that estimates the latent variables by maximizing the likelihood on the restricted subspace orthogonal to the known confounding factors and show that this reduces to probabilistic principal component analysis on that subspace. The method then estimates the variance–covariance parameters by maximizing the remaining terms in the likelihood function given the latent variables, using a newly derived analytic solution for this problem. Compared to gradient-based optimizers, our method attains greater or equal likelihood values, can be computed using standard matrix operations, results in latent factors that do not overlap with any known factors, and has a runtime reduced by several orders of magnitude. Hence, the REML method facilitates the application of random effects modeling strategies for learning latent variance components to much larger gene expression datasets than possible with current methods.publishedVersio

    In Search for a Generalizable Method for Source Free Domain Adaptation

    Full text link
    Source-free domain adaptation (SFDA) is compelling because it allows adapting an off-the-shelf model to a new domain using only unlabelled data. In this work, we apply existing SFDA techniques to a challenging set of naturally-occurring distribution shifts in bioacoustics, which are very different from the ones commonly studied in computer vision. We find existing methods perform differently relative to each other than observed in vision benchmarks, and sometimes perform worse than no adaptation at all. We propose a new simple method which outperforms the existing methods on our new shifts while exhibiting strong performance on a range of vision datasets. Our findings suggest that existing SFDA methods are not as generalizable as previously thought and that considering diverse modalities can be a useful avenue for designing more robust models

    Real-World Performance of Autonomously Reporting Normal Chest Radiographs in NHS Trusts Using a Deep-Learning Algorithm on the GP Pathway

    Full text link
    AIM To analyse the performance of a deep-learning (DL) algorithm currently deployed as diagnostic decision support software in two NHS Trusts used to identify normal chest x-rays in active clinical pathways. MATERIALS AND METHODS A DL algorithm has been deployed in Somerset NHS Foundation Trust (SFT) since December 2022, and at Calderdale & Huddersfield NHS Foundation Trust (CHFT) since March 2023. The algorithm was developed and trained prior to deployment, and is used to assign abnormality scores to each GP-requested chest x-ray (CXR). The algorithm classifies a subset of examinations with the lowest abnormality scores as High Confidence Normal (HCN), and displays this result to the Trust. This two-site study includes 4,654 CXR continuous examinations processed by the algorithm over a six-week period. RESULTS When classifying 20.0% of assessed examinations (930) as HCN, the model classified exams with a negative predictive value (NPV) of 0.96. There were 0.77% of examinations (36) classified incorrectly as HCN, with none of the abnormalities considered clinically significant by auditing radiologists. The DL software maintained fast levels of service to clinicians, with results returned to Trusts in a mean time of 7.1 seconds. CONCLUSION The DL algorithm performs with a low rate of error and is highly effective as an automated diagnostic decision support tool, used to autonomously report a subset of CXRs as normal with high confidence. Removing 20% of all CXRs reduces workload for reporters and allows radiology departments to focus resources elsewhere.Comment: 7 pages, 5 figures, 2 tables. Submitted to Clinical Radiolog

    Intelligent energy management of compressed air systems

    Get PDF

    Robustness of an Artificial Intelligence Solution for Diagnosis of Normal Chest X-Rays

    Full text link
    Purpose: Artificial intelligence (AI) solutions for medical diagnosis require thorough evaluation to demonstrate that performance is maintained for all patient sub-groups and to ensure that proposed improvements in care will be delivered equitably. This study evaluates the robustness of an AI solution for the diagnosis of normal chest X-rays (CXRs) by comparing performance across multiple patient and environmental subgroups, as well as comparing AI errors with those made by human experts. Methods: A total of 4,060 CXRs were sampled to represent a diverse dataset of NHS patients and care settings. Ground-truth labels were assigned by a 3-radiologist panel. AI performance was evaluated against assigned labels and sub-groups analysis was conducted against patient age and sex, as well as CXR view, modality, device manufacturer and hospital site. Results: The AI solution was able to remove 18.5% of the dataset by classification as High Confidence Normal (HCN). This was associated with a negative predictive value (NPV) of 96.0%, compared to 89.1% for diagnosis of normal scans by radiologists. In all AI false negative (FN) cases, a radiologist was found to have also made the same error when compared to final ground-truth labels. Subgroup analysis showed no statistically significant variations in AI performance, whilst reduced normal classification was observed in data from some hospital sites. Conclusion: We show the AI solution could provide meaningful workload savings by diagnosis of 18.5% of scans as HCN with a superior NPV to human readers. The AI solution is shown to perform well across patient subgroups and error cases were shown to be subjective or subtle in nature

    YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria

    Get PDF
    Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 Ã… resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2
    • …
    corecore