6 research outputs found

    Rare earth-based permanent magnets: properties, production, and recycling routes

    No full text
    The workshop "Green deal and circular economy challenges of rare earth-based permanent magnets with technical aspects" is organized as part of the EIT project RECO2MAG - Novel grain boundaries engineered resource efficient Nd-Fe-B permanent magnets (financed by EIT KIC Raw Material)

    The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification?

    No full text
    In this review article, we focus on the relationship between permanent magnets and the electric motor, as this relationship has not been covered in a review paper before. With the increasing focus on battery research, other parts of the electric system have been neglected. To make electrification a smooth transition, as has been promised by governing bodies, we need to understand and improve the electric motor and its main component, the magnet. Today’s review papers cover only the engineering perspective of the electric motor or the material-science perspective of the magnetic material, but not both together, which is a crucial part of understanding the needs of electric-motor design and the possibilities that a magnet can give them. We review the road that leads to today’s state-of-the-art in electric motors and magnet design and give possible future roads to tackle the obstacles ahead and reach the goals of a fully electric transportation system. With new technologies now available, like additive manufacturing and artificial intelligence, electric motor designers have not yet exploited the possibilities the new freedom of design brings. New out-of-the-box designs will have to emerge to realize the full potential of the new technology. We also focus on the rare-earth crisis and how future price fluctuations can be avoided. Recycling plays a huge role in this, and developing a self-sustained circular economy will be critical, but the road to it is still very steep, as ongoing projects show

    Online course: Green deal and circular economy challenges of rare earth-based permanent magnets with technical aspects

    No full text
    The workshop "Green deal and circular economy challenges of rare earth-based permanent magnets with technical aspects" is organized as part of the EIT project RECO2MAG - Novel grain boundaries engineered resource efficient Nd-Fe-B permanent magnets (financed by EIT KIC Raw Material)

    Additive-manufactured anisotropic magnets for harsh environments

    No full text
    We describe the fabrication of SrFe12O19-based filaments, using polyphenylene sulphide (PPS) as the binder for the magnetic particles, and the subsequent printing of this filament with a 3D printer. PPS is an ideal polymer for applications in harsh environments, making it applicable for the automotive industry, where it is widely used with injection moulding. However, 3D printing this polymer introduces a major challenge. Because PPS is more difficult to extrude than polyamide, the filling factor in this study was set to 70 wt. %, which is lower than when used in injection moulding (close to 90 wt. %). The filament with a diameter of 2.75 mm was printed into a disk-shaped magnet with a diameter of 10 mm and a height of 4 mm using a HAGE 3D printer that uses a belt system for the filament extrusion. The magnets were printed onto a glass surface and onto a bulk Nd-Fe-B permanent magnet with an external magnetic field, parallel to the printer’s z-axis. Printing in the presence of a magnetic field was found to increase the magnet’s remanent magnetization by 61%, compared to an isotropic print. Without an external magnetic field we achieved a remanence of 23.9 emu/g for the 70 wt.% filling fraction, while when printing in a magnetic field, the value of the remanence improved to 39.7 emu/g because of the improved magnetic texture
    corecore