15 research outputs found

    The Battle of the Water Networks II (BWN-II)

    Get PDF
    The Battle of the Water Networks II (BWN-II) is the latest of a series of competitions related to the design and operation of water distribution systems (WDSs) undertaken within the Water Distribution Systems Analysis (WDSA) Symposium series. The BWN-II problem specification involved a broadly defined design and operation problem for an existing network that has to be upgraded for increased future demands, and the addition of a new development area. The design decisions involved addition of new and parallel pipes, storage, operational controls for pumps and valves, and sizing of backup power supply. Design criteria involved hydraulic, water quality, reliability, and environmental performance measures. Fourteen teams participated in the Battle and presented their results at the 14th Water Distribution Systems Analysis (WDSA 2012) conference in Adelaide, Australia, September 2012. This paper summarizes the approaches used by the participants and the results they obtained. Given the complexity of the BWN-II problem and the innovative methods required to deal with the multi-objective, high dimensional and computationally demanding nature of the problem, this paper represents a snap-shot of state of the art methods for the design and operation of water distribution systems. A general finding of this paper is that there is benefit in using a combination of heuristic engineering experience and sophisticated optimization algorithms when tackling complex real-world water distribution system design problems.Angela Marchi...Angus R. Simpson, Aaron C. Zecchin, Holger R. Maier...Christopher Stokes, Wenyan Wu, Graeme C. Dandy...et al

    The Battle of the Water Networks II (BWN-II)

    Get PDF
    The Battle of the Water Networks II (BWN-II) is the latest of a series of competitions related to the design and operation of water distribution systems (WDSs) undertaken within the Water Distribution Systems Analysis (WDSA) Symposium series. The BWN-II problem specification involved a broadly defined design and operation problem for an existing network that has to be upgraded for increased future demands, and the addition of a new development area. The design decisions involved addition of new and parallel pipes, storage, operational controls for pumps and valves, and sizing of backup power supply. Design criteria involved hydraulic, water quality, reliability, and environmental performance measures. Fourteen teams participated in the Battle and presented their results at the 14th Water Distribution Systems Analysis (WDSA 2012) conference in Adelaide, Australia, September 2012. This paper summarizes the approaches used by the participants and the results they obtained. Given the complexity of the BWN-II problem and the innovative methods required to deal with the multi-objective, high dimensional and computationally demanding nature of the problem, this paper represents a snap-shot of state of the art methods for the design and operation of water distribution systems. A general finding of this paper is that there is benefit in using a combination of heuristic engineering experience and sophisticated optimization algorithms when tackling complex real-world water distribution system design problems.Angela Marchi...Angus R. Simpson, Aaron C. Zecchin, Holger R. Maier...Christopher Stokes, Wenyan Wu, Graeme C. Dandy...et al

    Mycobacterium abscessus infection and potable water [Conference Abstract]

    Get PDF
    Mycobacterium abscessus is a rapidly growing mycobacteria responsible for progressive pulmonary disease, soft tissue and wound infections, and can contaminate clinical specimens. Nontuberculous mycobacteria (NTM) are generally considered environmental organisms though M. abscessus has not featured frequently in environmental studies, particularly those examining potable water. In a study of Brisbane potable water, M. abscessus was isolate from ten different locations. The incidence of disease due to M. abscessus has been increasing in Queensland. Aim: To compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods: From a study of Brisbane potable water between 2007 and 2009, ten isolates confirmed as M. abscessus were recovered. In addition, one strain was isolated from a rainwater tank of a patient with disease due to M. avium, and another from the swimming pool of a patient with M. intracellulare disease. A random sample of 74 clinical isolates referred to the QLD Mycobacterial reference laboratory during the same time period was available for comparison using repPCR strain typing (Diversilab). Results: The drinking water isolates formed two distinct strain patterns (A and B) that shared >90% similarity. The tankwater isolate (pattern C) shared >85% similarity with the potable water isolates, but the pool isolate (D) was distinctly different. Fifty-three clinical isolates clustered tightly (>95% similarity) with the Group A potable water isolates, 4 patients with Group B. Thirteen patient isolates clustered with the Rainwater tank isolate. One patient matched the pool isolate. There were a further 3 patient isolates that were unrelated to the water isolates. No differences were found between strain types in terms of geographic origin, gender, age, or site/type of infection. Conclusion: The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same area, strengthens the possibility that drinking water may be a source of infection in these patients

    Molecular analysis of Mycobacterium kansasii from human and potable water specimens

    Get PDF
    This research investigated whether the environmental mycobacteria Mycobacterium kansasii is linked to outbreaks of pulmonary disease in Queensland. The prevalence of pulmonary disease due to environmental mycobacteria is increasing, however, it's not clear if waterborne M. kansasii are the same as those that cause disease in humans. She developed and compared three DNA-based methods to determine the likely source of M. kansasii and found that Brisbane's municipal water is unlikely to be the infection source. However, waterborne M. kansasii cannot be excluded from areas associated with mining and industry. These findings have been presented at several national and international conferences

    Orbital actinomycotic mycetoma caused by

    No full text
    Case summary An 18-month-old male neutered Ragdoll cat presented with an 8 week history of progressive unilateral right-sided mucopurulent nasal discharge and exophthalmos. Magnetic resonance imaging revealed a heterogeneous right retrobulbar mass and bilateral nasal cavity disease. Filamentous structures seen on cytology of retrobulbar and nasal biopsies were mistakenly identified as filamentous fungal hyphae. Subsequent investigations revealed that the cat had a retrobulbar actinomycotic mycetoma with invasion of the globe. The aetiological agent was identified on 16S recombinant DNA sequencing as Streptomyces cinnamoneus . After exenteration and chronic antimicrobial therapy the cat was alive and well 3 years after presentation. Relevance and novel information This is the first report of a pathogenic role of S cinnamoneus in a cat. Orbital actinomycotic mycetomas in cats can resemble mycotic granulomas

    Factors associated with the isolation of Nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia

    Get PDF
    Background: Nontuberculous mycobacteria (NTM) are normal inhabitants of a variety of environmental reservoirs including natural and municipal water. The aim of this study was to document the variety of species of NTM in potable water in Brisbane, QLD, with a specific interest in the main pathogens responsible for disease in this region and to explore factors associated with the isolation of NTM. One-litre water samples were collected from 189 routine collection sites in summer and 195 sites in winter. Samples were split, with half decontaminated with CPC 0.005%, then concentrated by filtration and cultured on 7H11 plates in MGIT tubes (winter only).Results: Mycobacteria were grown from 40.21% sites in Summer (76/189) and 82.05% sites in winter (160/195). The winter samples yielded the greatest number and variety of mycobacteria as there was a high degree of subculture overgrowth and contamination in summer. Of those samples that did yield mycobacteria in summer, the variety of species differed from those isolated in winter. The inclusion of liquid media increased the yield for some species of NTM. Species that have been documented to cause disease in humans residing in Brisbane that were also found in water include M. gordonae, M. kansasii, M. abscessus, M. chelonae, M. fortuitum complex, M. intracellulare, M. avium complex, M. flavescens, M. interjectum, M. lentiflavum, M. mucogenicum, M. simiae, M. szulgai, M. terrae. M. kansasii was frequently isolated, but M. avium and M. intracellulare (the main pathogens responsible for disease is QLD) were isolated infrequently. Distance of sampling site from treatment plant in summer was associated with isolation of NTM. Pathogenic NTM (defined as those known to cause disease in QLD) were more likely to be identified from sites with narrower diameter pipes, predominantly distribution sample points, and from sites with asbestos cement or modified PVC pipes.Conclusions: NTM responsible for human disease can be found in large urban water distribution systems in Australia. Based on our findings, additional point chlorination, maintenance of more constant pressure gradients in the system, and the utilisation of particular pipe materials should be considered

    Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM

    Get PDF
    It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species
    corecore