5 research outputs found

    Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds

    Get PDF
    The surface compositions of bulk mixed metal oxides stoichiometric vanadate and molybdate compounds have been systematically examined, for the first time, by combined synchroton-based depth-resolved XPS profile analysis, conventional XPS and LEIS spectroscopy. The outer surfaces of many, but not all, of the bulk mixed vanadates and molybdates tend to be enriched with surface VOx and MoOx species approaching monolayer coverage. Furthermore, this surface enrichment phenomenon can be dramatically enhanced in the presence of minor amount of alkali impurities. These new findings have significant implications for the fundamental understanding of how bulk mixed oxide materials function in numerous technical applications.Fil: Merzlikin, Sergiy V. . Ruhr-Universitt Bochum, Lehrstuhl fr Technische Chemie; AlemaniaFil: Tolkachev, Nikolay N. . Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry; RusiaFil: Briand, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Strunskus,Thomas . Ruhr-Universitt Bochum, Lehrstuhl Physikalische Chemie; AlemaniaFil: Wöll, Christof. Ruhr-Universitt Bochum, Lehrstuhl Physikalische Chemie; AlemaniaFil: Wachs, Israel E.. Lehigh University Bethlehem, Department of Chemical Engineering, Operando Molecular Spectroscopy and Catalysis Laboratory; Estados UnidosFil: Grüenert, Wolfgang . Ruhr-Universitt Bochum, Lehrstuhl fr Technische Chemie; Alemani

    Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds

    Get PDF
    The surface compositions of bulk mixed metal oxides stoichiometric vanadate and molybdate compounds have been systematically examined, for the first time, by combined synchroton-based depth-resolved XPS profile analysis, conventional XPS and LEIS spectroscopy. The outer surfaces of many, but not all, of the bulk mixed vanadates and molybdates tend to be enriched with surface VOx and MoOx species approaching monolayer coverage. Furthermore, this surface enrichment phenomenon can be dramatically enhanced in the presence of minor amount of alkali impurities. These new findings have significant implications for the fundamental understanding of how bulk mixed oxide materials function in numerous technical applications.Fil: Merzlikin, Sergiy V. . Ruhr-Universitt Bochum, Lehrstuhl fr Technische Chemie; AlemaniaFil: Tolkachev, Nikolay N. . Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry; RusiaFil: Briand, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Strunskus,Thomas . Ruhr-Universitt Bochum, Lehrstuhl Physikalische Chemie; AlemaniaFil: Wöll, Christof. Ruhr-Universitt Bochum, Lehrstuhl Physikalische Chemie; AlemaniaFil: Wachs, Israel E.. Lehigh University Bethlehem, Department of Chemical Engineering, Operando Molecular Spectroscopy and Catalysis Laboratory; Estados UnidosFil: Grüenert, Wolfgang . Ruhr-Universitt Bochum, Lehrstuhl fr Technische Chemie; Alemani

    Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds

    Get PDF
    The surface compositions of bulk mixed metal oxides stoichiometric vanadate and molybdate compounds have been systematically examined, for the first time, by combined synchroton-based depth-resolved XPS profile analysis, conventional XPS and LEIS spectroscopy. The outer surfaces of many, but not all, of the bulk mixed vanadates and molybdates tend to be enriched with surface VOx and MoOx species approaching monolayer coverage. Furthermore, this surface enrichment phenomenon can be dramatically enhanced in the presence of minor amount of alkali impurities. These new findings have significant implications for the fundamental understanding of how bulk mixed oxide materials function in numerous technical applications.Fil: Merzlikin, Sergiy V. . Ruhr-Universitt Bochum, Lehrstuhl fr Technische Chemie; AlemaniaFil: Tolkachev, Nikolay N. . Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry; RusiaFil: Briand, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Strunskus,Thomas . Ruhr-Universitt Bochum, Lehrstuhl Physikalische Chemie; AlemaniaFil: Wöll, Christof. Ruhr-Universitt Bochum, Lehrstuhl Physikalische Chemie; AlemaniaFil: Wachs, Israel E.. Lehigh University Bethlehem, Department of Chemical Engineering, Operando Molecular Spectroscopy and Catalysis Laboratory; Estados UnidosFil: Grüenert, Wolfgang . Ruhr-Universitt Bochum, Lehrstuhl fr Technische Chemie; Alemani

    Hydrodechlorination of 4-Chlorophenol on Pd-Fe Catalysts on Mesoporous ZrO2SiO2 Support

    Get PDF
    A mesoporous support based on silica and zirconia (ZS) was used to prepare monometallic 1 wt% Pd/ZS, 10 wt% Fe/ZS, and bimetallic FePd/ZS catalysts. The catalysts were characterized by TPR-H2, XRD, SEM-EDS, TEM, AAS, and DRIFT spectroscopy of adsorbed CO after H2 reduction in situ and tested in hydrodechlorination of environmental pollutant 4-chlorophelol in aqueous solution at 30 °C. The bimetallic catalyst demonstrated an excellent activity, selectivity to phenol and stability in 10 consecutive runs. FePd/ZS has exceptional reducibility due to the high dispersion of palladium and strong interaction between FeOx and palladium, confirmed by TPR-H2, DRIFT spectroscopy, XRD, and TEM. Its reduction occurs during short-time treatment with hydrogen in an aqueous solution at RT. The Pd/ZS was more resistant to reduction but can be activated by aqueous phenol solution and H2. The study by DRIFT spectroscopy of CO adsorbed on Pd/ZS reduced in harsh (H2, 330 °C), medium (H2, 200 °C) and mild conditions (H2 + aqueous solution of phenol) helped to identify the reasons of the reducing action of phenol solution. It was found that phenol provided fast transformation of Pd+ to Pd0. Pd/ZS also can serve as an active and stable catalyst for 4-PhCl transformation to phenol after proper reduction
    corecore