557 research outputs found

    The role of lighting in road traffic collisions

    Get PDF
    The paper reports a study that examines how to determine if a road traffic collision took place in daylight or in the dark. An innovative method was developed, based on solar altitude, to establish cut-off points of daylight and darkness determined from a study of daylight availability in England, Scotland and Wales. This approach provides a rigorous method to differentiate daytime and night-time collisions. The criteria were used in a study of the collisions reported in the STATS19 data set for the weeks either side of the clock changes that are necessary between Greenwich Mean Time and British Summer Time. By comparing periods with the same clock time either side of the time change, using the aforementioned method, it was possible to isolate collisions within the same time period that during one week occurred in darkness and in the other week in daylight. The initial finding was that there are 19.3% more collisions in the dark periods and there is an even greater increase (31.7%) in pedestrian injuries

    Critical glycosylated residues in exon three of erythrocyte Glycophorin A engage Plasmodium falciparum EBA-175 and define receptor specificity

    Get PDF
    Erythrocyte invasion is an essential step in the pathogenesis of malaria. The erythrocyte binding-like (EBL) family of Plasmodium falciparum proteins recognizes glycophorins (Gp) on erythrocytes and plays a critical role in attachment during invasion. However, the molecular basis for specific receptor recognition by each parasite ligand has remained elusive, as is the case with the ligand/receptor pair P. falciparum EBA-175 (PfEBA-175)/GpA. This is due largely to difficulties in producing properly glycosylated and functional receptors. Here, we developed an expression system to produce recombinant glycosylated and functional GpA, as well as mutations and truncations. We identified the essential binding region and determinants for PfEBA-175 engagement, demonstrated that these determinants are required for the inhibition of parasite growth, and identified the glycans important in mediating the PfEBA-175–GpA interaction. The results suggest that PfEBA-175 engages multiple glycans of GpA encoded by exon 3 and that the presentation of glycans is likely required for high-avidity binding. The absence of exon 3 in GpB and GpE due to a splice site mutation confers specific recognition of GpA by PfEBA-175. We speculate that GpB and GpE may have arisen due to selective pressure to lose the PfEBA-175 binding site in GpA. The expression system described here has wider application for examining other EBL members important in parasite invasion, as well as additional pathogens that recognize glycophorins. The ability to define critical binding determinants in receptor-ligand interactions, as well as a system to genetically manipulate glycosylated receptors, opens new avenues for the design of interventions that disrupt parasite invasion

    Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175

    Get PDF
    Disrupting erythrocyte invasion by Plasmodium falciparum is an attractive approach to combat malaria. P. falciparum EBA-175 (PfEBA-175) engages the host receptor Glycophorin A (GpA) during invasion and is a leading vaccine candidate. Antibodies that recognize PfEBA-175 can prevent parasite growth, although not all antibodies are inhibitory. Here, using x-ray crystallography, small-angle x-ray scattering and functional studies, we report the structural basis and mechanism for inhibition by two PfEBA-175 antibodies. Structures of each antibody in complex with the PfEBA-175 receptor binding domain reveal that the most potent inhibitory antibody, R217, engages critical GpA binding residues and the proposed dimer interface of PfEBA-175. A second weakly inhibitory antibody, R218, binds to an asparagine-rich surface loop. We show that the epitopes identified by structural studies are critical for antibody binding. Together, the structural and mapping studies reveal distinct mechanisms of action, with R217 directly preventing receptor binding while R218 allows for receptor binding. Using a direct receptor binding assay we show R217 directly blocks GpA engagement while R218 does not. Our studies elaborate on the complex interaction between PfEBA-175 and GpA and highlight new approaches to targeting the molecular mechanism of P. falciparum invasion of erythrocytes. The results suggest studies aiming to improve the efficacy of blood-stage vaccines, either by selecting single or combining multiple parasite antigens, should assess the antibody response to defined inhibitory epitopes as well as the response to the whole protein antigen. Finally, this work demonstrates the importance of identifying inhibitory-epitopes and avoiding decoy-epitopes in antibody-based therapies, vaccines and diagnostics

    Ethnicity and gender related differences in extended intraesophageal pH monitoring parameters in infants: a retrospective study

    Get PDF
    BACKGROUND: Gastroesophageal reflux disease (GERD) is believed to be more common in adult males as compared to females. It also has been shown in adults to be more common in Caucasians. We wanted to determine ethnicity and gender related differences for extended pH monitoring parameters in infancy. METHODS: Extended pH monitoring data (EPM) from infants <1 year of age were reviewed. Results were classified in two groups, as control and Gastroesophageal reflux disease (GERD) group based on the reflux index (RI). The GERD group had RI of equal to or more than 5% of total monitoring period. The parameters of RI, total number of episodes of pH < 4, and the number of episodes with pH < 4 lasting more than 5 minutes were compared by genders and by ethnic groups, Caucasians and African American (AA). RESULTS: There were 569 infants, 388 controls, 181 with GERD (320 males, 249 females; 165 Caucasians, 375 AA). No statistical difference in EPM parameters was detected between genders in both groups. However, Caucasian infants had a significantly higher incidence of GERD than AA infants (p = 0.036). On stratifying by gender, Caucasian females had a significantly higher number of reflux episodes >5 minutes as compared to AA females in the control group (p = 0.05). Furthermore, Caucasian females with GERD showed an overall higher trend for all parameters. Caucasian males had a trend for higher mean number of reflux episodes as compared to AA males in the control group (p = 0.09). CONCLUSION: Although gender specific control data do not appear warranted in infants undergoing EPM, ethnic differences related to an overall increased incidence of pathologic GERD in Caucasian infants should be noted

    Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

    Get PDF
    The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion
    • …
    corecore