125 research outputs found

    A zinc-doped endodontic cement facilitates functional mineralization and stress dissipation at the dentin surface

    Get PDF
    The purpose of this study was to evaluate nanohardness and viscoelastic behavior of dentin surfaces treated with two canal sealer cements for dentin remineralization. Dentin surfaces were subjected to: i) 37% phosphoric acid (PA) or ii) 0.5 M ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite), respectively. Samples were stored in simulated body fluid during 24 h or 21 d. The intertubular and peritubular dentin were evaluated using a nanoindenter to assess nanohardness (Hi). The load/displacement responses were used for the nano-dynamic mechanical analysis to estimate complex modulus (E*) and tan delta (?). The modulus mapping was obtained by imposing a quasistatic force setpoint to which a sinusoidal force was superimposed. AFM imaging and FESEM analysis were performed. After 21 d of storage, dentin surfaces treated with EDTA+calcypatite, PA+calcypatite and EDTA+oxipatite showed viscoelastic discrepancies between peritubular and intertubular dentin, meaning a risk for cracking and breakdown of the surface. At both 24 h and 21 d, tan ? values at intertubular dentin treated with the four treatments performed similar. At 21 d time point, intertubular dentin treated with PA+oxipatite achieved the highest complex modulus and nanohardness, i.e., highest resistance to deformation and functional mineralization, among groups. Intertubular and peritubular dentin treated with PA+oxipatite showed similar values of tan ? after 21 d of storage. This produced a favorable dissipation of energy with minimal energy concentration, preserving the structural integrity at the dentin surface

    Effect of sodium hypochlorite on microleakage of composite restorations bonded with a polyalkenoic containing adhesive system

    Get PDF
    Abstract no. 905published_or_final_versio

    Bonding to Er-YAG laser-treated dentin

    Get PDF
    published_or_final_versio

    Silver-loaded nanoparticles affect ex-vivo mechanical behavior and mineralization of dentin

    Get PDF
    The aim was to evaluate the effect of silver loaded nanoparticles (NPs) application on the triboscopic, crystallographic and viscoelastic properties of demineralized dentin. Polymethylmetacrylate-based NPs and Ag loaded NPs were applied on demineralized dentin. Treated and untreated surfaces were probed by a nanoindenter to test viscoelasticity, and by atomic force microscopy to test nanoroughness and collagen fibril diameter. X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging were also used. Dentin treated with Ag-NPs attained the lowest complex modulus, and the highest tan delta values after 7 days of storage. Dentin treated with undoped-NPs achieved the lowest nanoroughness and the greatest collagen bandwidths among groups. Crystals were identified as hydroxyapatite with the highest crystallographic maturity and crystallite size in dentin treated with undoped-NPs. Texture increased in all samples from 24 h to 7 d, except in dentin surfaces treated with Ag-NPs at 310 plane. Polyhedral, block-like, hexagonal or plate-like shaped apatite crystals constituted the bulk of minerals in dentin treated with Ag-NPs, after 7 d. Polyhedral or rounded/drop-like, and polymorphic in strata crystal apatite characterized the minerals when undoped-NPs were used, with more crystalline characteristics after 7 d than that found when Ag-NPs were applied. Ag-NPs application did not improve the mechanical performance of dentin and did not produce dentin remineralization. However, energy was dissipated through the dentin without showing stress concentration; contrary was occurring at dentin treated with undoped-NPs, that provoked bridge-like mineral deposits at the dentin surface. Ag-NPs application did not enhance the mechanical properties of cervical dentin, though the energy dissipation did not damage the dentin structure. Remineralization at dentin was not produced after Ag-NPs application, though improved crystallinity may lead to increase stability of the apatite that was generated at the dentin surface

    Zinc-modified nanopolymers improve the quality of resin-dentin bonded interfaces

    Get PDF
    Introduction: Demineralized collagen fibers at the hybrid layer are susceptible to degradation. Remineralization may aid to improve bond longevity. Objectives: The aim of the present study was to infiltrate zinc and calcium-loaded polymeric nanoparticles into demineralized dentin to facilitate hybrid layer remineralization. Materials and methods: Zinc or calcium-loaded polymeric nanoparticles were infiltrated into etched dentin, and Single Bond Adhesive was applied. Bond strength was tested after 24 h and 6 months storage. Nanomechanical properties, dyeassisted confocal laser microscopy, and Masson’s trichrome staining evaluation were performed to assess for the hybrid layer morphology, permeability, and remineralization ability after 24 h and 3 months. Data were analyzed by ANOVA and Student–Newman–Keuls multiple comparisons tests (p < 0.05). Results: Immediate bond strength was not affected by nanoparticles infiltration (25 to 30 MPa), while after 6 months, bond strengths were maintained (22 to 24 MPa). After 3 months, permeability occurred only in specimens in which nanoparticles were not infiltrated. Dentin remineralization, at the bottom of the hybrid layer, was observed in all groups. After microscopy analysis, zinc-loaded nanoparticles were shown to facilitate calcium deposition throughout the entire hybrid layer. Young’s modulus at the hybrid layer increased from 2.09 to 3.25 GPa after 3 months, in specimens with zinc nanoparticles; meanwhile, these values were reduced from 1.66 to 0.49 GPa, in the control group. Conclusion: Infiltration of polymeric nanoparticles into demineralized dentin increased long-term bond strengths. Zinc-loaded nanoparticles facilitate dentin remineralization within the complete resin–dentin interface. Clinical relevance: Resin–dentin bond longevity and dentin remineralization at the hybrid layer were facilitated by zincloaded nanoparticles.This work was supported by a grant, MINECO/FEDER MAT2014-52036-P

    Microtensile bond strength of several adhesive systems to different dentin depths

    Get PDF
    Abstract no. 15published_or_final_versio

    Reversal of compromised bonding to oxidized etched dentin

    Get PDF
    The mechanism responsible for hydrogenperoxide- or sodium-hypochlorite-induced reductions in dentin bond strength is unknown. This in vitro study tested the hypothesis that these oxidizing agents were responsible by attempting to reverse the effect with sodium ascorbate, a reducing agent. Human dentin was treated with these oxidants before or after being acid-etched and with or without post-treatment with sodium ascorbate. They were bonded with either Single Bond or Excite. Hydrogen peroxide reduced the bond strengths of both adhesives, while sodium hypochlorite produced reduction in adhesion of only Single Bond (p < 0.05). Following treatment with sodium ascorbate, reductions in bond strength were reversed. Transmission and scanning electron microscopy showed partial removal of the demineralized collagen matrix only by sodium hypochlorite. The observed compromised bond strengths cannot be attributed to incomplete deproteinization and may be related to changes in the redox potential of the bonding substrates.published_or_final_versio

    Reversal of compromised bonding in NaOCI or H2O2 treated etched dentin

    Get PDF
    published_or_final_versio

    Reversal of compromised bonding in bleached enamel

    Get PDF
    Oxygen inhibits polymerization of resin-based materials. We hypothesized that compromised bonding to bleached enamel can be reversed with sodium ascorbate, an anti-oxidant. Sandblasted human enamel specimens were treated with distilled water (control) and 10% carbamide peroxide gel with or without further treatment with 10% sodium ascorbate. They were bonded with Single Bond (3M-ESPE) or Prime&Bond NT (Dentsply DeTrey) and restored with a composite. Specimens were prepared for microtensile bond testing and transmission electron microscopy after immersion in ammoniacal silver nitrate for nanoleakage evaluation. Bond strengths of both adhesives were reduced after bleaching but were reversed following sodium ascorbate treatment (P < 0.001). Resin-enamel interfaces in bleached enamel exhibited more extensive nanoleakage in the form of isolated silver grains and bubble-like silver deposits. Reduction of resin-enamel bond strength in bleached etched enamel is likely to be caused by a delayed release of oxygen that affects the polymerization of resin components.published_or_final_versio
    corecore