2,011 research outputs found

    Heterogeneous chemistry related to Antarctic ozone depletion: Reaction of ClONO2 and N2O5 on ice surfaces

    Get PDF
    Laboratory studies of heterogeneous reactions of possible importance for Antarctic ozone depletion were performed. In particular, the reactions of chlorine nitrate (ClONO2) and dinitrogen pentoxide (N2O5) were investigated on ice and HCl/ice surfaces. These reactions occur on the surfaces of polar stratospheric clouds (PSCs) over Antarctica. One reaction transforms the stable chlorine reservoir species (ClONO2 and HCl) into photochemically active chlorine in the form of HOCl and Cl2. Condensation of HNO3 in the reactions removes odd nitrogen from the stratosphere, a requirement in nearly all models of Antarctic ozone depletion. Other reactions may also be important for Antarctic ozone depletion. Like the reactions of chlorine nitrate, these reactions deplete odd nitrogen through HNO3 condensation. In addition, one reaction converts a stable chlorine reservior species (HCl) into photochemically active chlorine (ClNO2). These reactions were studied with a modified version of a Knudsen cell flow reactor

    The 1980 solar maximum mission event listing

    Get PDF
    Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included

    Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O2_{2} on Haze Formation and Composition

    Full text link
    Previous studies of haze formation in the atmosphere of the Early Earth have focused on N2_{2}/CO2_{2}/CH4_{4} atmospheres. Here, we experimentally investigate the effect of O2_{2} on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2_{2}/CO2_{2}/CH4_{4}/O2_{2} gas mixtures subjected to FUV radiation (115-400 nm) for a range of initial CO2_{2}/CH4_{4}/O2_{2} mixing ratios (O2_{2} ranging from 2 ppm to 0.2\%). At the lowest O2_{2} concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater) particles are still produced, but the addition of O2_{2} decreases the production rate. Both the particle size and number density decrease with increasing O2_{2}, indicating that O2_{2} affects particle nucleation and growth. The particle density increases with increasing O2_{2}. The addition of CO2_{2} and O2_{2} not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2_{2} results in the formation of nitrate bearing molecules. The fact that the presence of oxygen bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical properties measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate.Comment: 15 pages, 3 tables, 8 figures, accepted in Astrophysical Journa

    Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles

    Get PDF
    Heterogeneous ice nucleation on solid ammonium sulfate and glutaric acid particles was studied using optical microscopy and Raman spectroscopy. Optical microscopy was used to detect selective nucleation events as water vapor was slowly introduced into an environmental sample cell. Particles that nucleated ice were dried via sublimation and examined in detail using Raman spectroscopy. Depositional ice nucleation is highly selective and occurred preferentially on just a few ammonium sulfate and glutaric acid particles in each sample. For freezing temperatures between 214 K and 235 K an average ice saturation ratio of <i>S</i> = 1.10±0.07 for solid ammonium sulfate was observed. Over the same temperature range, S values observed for ice nucleation on glutaric acid particles increased from 1.2 at 235 K to 1.6 at 218 K. Experiments with externally mixed particles further show that ammonium sulfate is a more potent ice nucleus than glutaric acid. Our results suggest that heterogeneous nucleation on ammonium sulfate may be an important pathway for atmospheric ice nucleation and cirrus cloud formation when solid ammonium sulfate aerosol particles are available for ice formation. This pathway for ice formation may be particularly significant near the tropical tropopause region where sulfates are abundant and other species known to be good ice nuclei are depleted

    Depositional Ice Nucleation on Solid Ammonium Sulfate and Glutaric Acid Particles

    Get PDF
    Heterogeneous ice nucleation on solid ammonium sulfate and glutaric acid particles was studied using optical microscopy and Raman spectroscopy. Optical microscopy was used to detect selective nucleation events as water vapor was slowly introduced into an environmental sample cell. Particles that nucleated ice were dried via sublimation and examined in detail using Raman spectroscopy. Depositional ice nucleation is highly selective and occurred preferentially on just a few ammonium sulfate and glutaric acid particles in each sample. For freezing temperatures between 214 K and 235 K an average ice saturation ratio of S = 1.10±0.07 for solid ammonium sulfate was observed. Over the same temperature range, S values observed for ice nucleation on glutaric acid particles increased from 1.2 at 235 K to 1.6 at 218 K. Experiments with externally mixed particles further show that ammonium sulfate is a more potent ice nucleus than glutaric acid. Our results suggest that heterogeneous nucleation on ammonium sulfate may be an important pathway for atmospheric ice nucleation and cirrus cloud formation when solid ammonium sulfate aerosol particles are available for ice formation. This pathway for ice formation may be particularly significant near the tropical tropopause region where sulfates are abundant and other species known to be good ice nuclei are depleted

    Laboratory Studies of Ice Formation Pathways from Ammonium Sulfate Particles

    Get PDF
    Cirrus clouds are composed of ice particles and their formation pathways have been studied extensively in the laboratory. The ability of ammonium sulfate particles to act as nuclei for cirrus clouds has been of particular importance because of their ubiquitous presence in the upper troposphere. The results of past laboratory experiments of homogeneous ice nucleation from ammonium sulfate particles show a wide range of freezing conditions. In the present study, a flow tube apparatus equipped with Fourier transform infrared spectroscopy was used to reexamine these discrepancies. It was found that when ammonium sulfate particles were preconditioned at 100% relative humidity (RH) prior to experimentation, the particles began to freeze at conditions predicted by the homogeneous ice nucleation model developed by Koop et al. (2000). If the particles were not preconditioned at 100% RH, some froze at warmer temperatures and lower ice saturation ratios than predicted by Koop et al. (2000). It is hypothesized that a population of effloresced particles affected freezing conditions for particles that were not preconditioned at 100% RH

    Laboratory Studies of Ice Formation Pathways from Ammonium Sulfate Particles

    Get PDF
    Cirrus clouds are composed of ice particles and their formation pathways have been studied extensively in the laboratory. The ability of ammonium sulfate particles to act as nuclei for cirrus clouds has been of particular importance because of their ubiquitous presence in the upper troposphere. The results of past laboratory experiments of homogeneous ice nucleation from ammonium sulfate particles show a wide range of freezing conditions. In the present study, a flow tube apparatus equipped with Fourier transform infrared spectroscopy was used to resolve these discrepancies. It was found that when ammonium sulfate particles were preconditioned at 100% relative humidity (RH) prior to experimentation, the particles froze at conditions predicted by the homogeneous ice nucleation model developed by Koop et al. (2000). If the particles were not preconditioned at 100% RH, they froze at warmer temperatures and lower ice saturation ratios than predicted by Koop et al. (2000). In order to determine if a population of effloresced particles affected freezing conditions for particles that were not preconditioned at 100%RH, a series of depositional ice nucleation experiments were carried out on dry ammonium sulfate particles. For freezing temperatures between 215 and 231 K, ice nucleated on the particles at ice saturation ratios (Sice) between 1 and 1.05. These conditions are much lower than predicted by Koop et al. (2000) and explain the differences in freezing conditions among preconditioning methods. In similar experiments, Abbatt et al. (2006) hypothesized that a small fraction of effloresced ammonium sulfate particles induced ice nucleation at Sice values lower than expected. The current study confirms the Abbatt et al. (2006) hypothesis and, to our knowledge, is the first study to directly observe ice nucleating onto freely flowing dry ammonium sulfate particles at Sice values approaching unity

    A new constant-pressure molecular dynamics method for finite system

    Full text link
    In this letter, by writing the volume as a function of coordinates of atoms, we present a new constant-pressure molecular dynamics method with parameters free. This method is specially appropriate for the finite system in which the periodic boundary condition does not exist. Simulations on the carbon nanotube and the Ni nanoparticle clearly demonstrate the validity of the method. By using this method, one can easily obtain the equation of states for the finite system under the external pressure.Comment: RevTex, 5 pages, 3 figures, submitted to Phys. Rev. Let
    • …
    corecore