research

Heterogeneous chemistry related to Antarctic ozone depletion: Reaction of ClONO2 and N2O5 on ice surfaces

Abstract

Laboratory studies of heterogeneous reactions of possible importance for Antarctic ozone depletion were performed. In particular, the reactions of chlorine nitrate (ClONO2) and dinitrogen pentoxide (N2O5) were investigated on ice and HCl/ice surfaces. These reactions occur on the surfaces of polar stratospheric clouds (PSCs) over Antarctica. One reaction transforms the stable chlorine reservoir species (ClONO2 and HCl) into photochemically active chlorine in the form of HOCl and Cl2. Condensation of HNO3 in the reactions removes odd nitrogen from the stratosphere, a requirement in nearly all models of Antarctic ozone depletion. Other reactions may also be important for Antarctic ozone depletion. Like the reactions of chlorine nitrate, these reactions deplete odd nitrogen through HNO3 condensation. In addition, one reaction converts a stable chlorine reservior species (HCl) into photochemically active chlorine (ClNO2). These reactions were studied with a modified version of a Knudsen cell flow reactor

    Similar works