7 research outputs found
Immunoglobulin G fragment crystallizable glycosylation after hematopoietic stem cell transplantation is dissimilar to donor profiles
Immunoglobulin G (IgG) fragment crystallizable (Fc) N-glycosylation has a large influence on the affinity of the antibody for binding to Fcγ-receptors (FcγRs) and C1q protein, thereby influencing immune effector functions. IgG Fc glycosylation is known to be partly regulated by genetics and partly by stimuli in the microenvironment of the B cell. Following allogeneic hematopoietic stem cell transplantation (HSCT), and in the presence of (almost) complete donor chimerism, IgG is expected to be produced by, and glycosylated in, B cells of donor origin. We investigated to what extent IgG glycosylation in patients after transplantation is determined by factors of the donor (genetics) or the recipient (environment). Using an IgG subclass-specific liquid chromatography-mass spectrometry method, we analyzed the plasma/serum IgG Fc glycosylation profiles of 34 pediatric patients pre-HSCT and at 6 and 12 months post-HSCT and compared these to the profiles of their donors and age-matched healthy controls. Patients treated for hematological malignancies as well as for non-malignant hematological diseases showed after transplantation a lower Fc galactosylation than their donors. Especially for the patients treated for leukemia, the post-HSCT Fc glycosylation profiles were more similar to the pre-HSCT recipient profiles than to profiles of the donors. Pre-HSCT, the leukemia patient group showed as distinctive feature a decrease in sialylation and in hybrid-type glycans as compared to healthy controls, which both normalized after transplantation. Our data suggest that IgG Fc glycosylation in children after HSCT does not directly mimic the donor profile, but is rather determined by persisting environmental factors of the host
Neurophysiological effects of sleep deprivation in healthy adults, a pilot study
Total sleep deprivation (TSD) may induce fatigue, neurocognitive slowing and mood changes, which are partly compensated by stress regulating brain systems, resulting in altered dopamine and cortisol levels in order to stay awake if needed. These systems, however, have never been studied in concert. At baseline, after a regular night of sleep, and the next morning after TSD, 12 healthy subjects performed a semantic affective classification functional magnetic resonance imaging (fMRI) task, followed by a [11C]raclopride positron emission tomography (PET) scan. Saliva cortisol levels were acquired at 7 time points during both days. Affective symptoms were measured using Beck Depression Inventory (BDI), Spielberger State Trait Anxiety Index (STAI) and visual analogue scales. After TSD, perceived energy levels, concentration, and speed of thought decreased significantly, whereas mood did not. During fMRI, response speed decreased for neutral words and positive targets, and accuracy decreased trendwise for neutral words and for positive targets with a negative distracter. Following TSD, processing of positive words was associated with increased left dorsolateral prefrontal activation. Processing of emotional words in general was associated with increased insular activity, whereas contrasting positive vs. negative words showed subthreshold increased activation in the (para)hippocampal area. Cortisol secretion was significantly lower after TSD. Decreased voxel-by-voxel [11 C]raclopride binding potential (BPND) was observed in left caudate. TSD induces widespread cognitive, neurophysiologic and endocrine changes in healthy adults, characterized by reduced cognitive functioning, despite increased regional brain activity
Usage of TCRAV and TCRBV gene families in human fetal and adult TCR rearrangements
We have investigated fetal and adult T-cell receptor (TCR) A and B V-gene repertoires both by fluorescence-activated cell sorter (FACS) analysis with the avialable TCR V region-specific mAbs and by the polymerase chain reaction (PRC) with TRC V gene family-specific oligonucleotides. Among the low number of CD3+ T cells, most of the TRC V region tested for could be detected by FACS analysis in liver, bone marrow, and spleen derived from a 14-week-old fetus and two 15-weeks-old fetuses. Similarly, the PCR analysis showed that the majority of the TCRAV and TCRBV families were expressed in the peripheral organs of the 13-week-old fetus, although an apparent absence of particular TCR V families was found in liver and bone marrow. This was most probably the consequence of the low number of CD3+ T cells in these organs. In 17-week-old week-old fetal thymi the level of expression of some TCRAV and TCRBV gene families, in particular those that contain single member, was lower compared to post-partum thymi and adult peripheral blood mononuclear cells. The combined data of FACS and PCR analysis demonstrate that TCR genes belonging to the majority of TCR V gene families can be used in TCR α and β chain rearrngements during early human fetal life. Our data also suggest that the expression levels of some of the single member TCR V gene families may be influenced by the development stage
The frontotemporal syndrome of ALS is associated with poor survival
Thirty percent of ALS patients have a frontotemporal syndrome (FS), defined as behavioral changes or cognitive impairment. Despite previous studies, there are no firm conclusions on the effect of the FS on survival and the use of non-invasive ventilation (NIV) in ALS. We examined the effect of the FS on survival and the start and duration of NIV in ALS. Behavioral changes were defined as >22 points on the ALS-Frontotemporal-Dementia-Questionnaire or ≥3 points on ≥2 items of the Neuropsychiatric Inventory. Cognitive impairment was defined as below the fifth percentile on ≥2 tests of executive function, memory or language. Classic ALS was defined as ALS without the frontotemporal syndrome. We performed survival analyses from symptom ons
Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome
The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Auditory perceptual styles of process and reactive schizophrenics as measured by The Sound Test
There is no abstract available for this research paper.Thesis (M.A.