727 research outputs found
Spectroscopic Properties of Polycyclic Aromatic Compounds. Examination of Nitromethane as a Selective Fluorescence Quenching Agent for Alternant Polycyclic Aromatic Nitrogen Hetero-Atom Derivatives
Article on the spectroscopic properties of polycyclic aromatic compounds and an examination of nitromethane as a selective fluorescence quenching agent for alternant polycyclic aromatic nitrogen hetero-atom derivatives
Kinetics of water flow through polymer gel
The water flow through the poly(acrylamide) gel under a constant water
pressure is measured by newly designed apparatus. The time evolution of the
water flow in the gel, is calculated based on the collective diffusion model of
the polymer network coupled with the friction between the polymer network and
the water. The friction coefficient are determined from the equilibrium
velocity of water flow. The Young modulus and the Poisson's ratio of the rod
shape gels are measured by the uni-axial elongation experiments, which
determine the longitudinal modulus independently from the water flow
experiments. With the values of the longitudinal modulus and of the friction
determined by the experiments, the calculated results are compared with the
time evolution of the flow experiments. We find that the time evolution of the
water flow is well described by a single characteristic relaxation time
predicted by the collective diffusion model coupled with the water friction.Comment: 7 pages, 5 figures, 27 references, Eqs adde
Statistical mechanics and stability of a model eco-system
We study a model ecosystem by means of dynamical techniques from disordered
systems theory. The model describes a set of species subject to competitive
interactions through a background of resources, which they feed upon.
Additionally direct competitive or co-operative interaction between species may
occur through a random coupling matrix. We compute the order parameters of the
system in a fixed point regime, and identify the onset of instability and
compute the phase diagram. We focus on the effects of variability of resources,
direct interaction between species, co-operation pressure and dilution on the
stability and the diversity of the ecosystem. It is shown that resources can be
exploited optimally only in absence of co-operation pressure or direct
interaction between species.Comment: 23 pages, 13 figures; text of paper modified, discussion extended,
references adde
Species Abundance Patterns in Complex Evolutionary Dynamics
An analytic theory of species abundance patterns (SAPs) in biological
networks is presented. The theory is based on multispecies replicator dynamics
equivalent to the Lotka-Volterra equation, with diverse interspecies
interactions. Various SAPs observed in nature are derived from a single
parameter. The abundance distribution is formed like a widely observed
left-skewed lognormal distribution. As the model has a general form, the result
can be applied to similar patterns in other complex biological networks, e.g.
gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres
Mimesis stories: composing new nature music for the shakuhachi
Nature is a widespread theme in much new music for the shakuhachi (Japanese bamboo flute). This article explores the significance of such music within the contemporary shakuhachi scene, as the instrument travels internationally and so becomes rooted in landscapes outside Japan, taking on the voices of new creatures and natural phenomena. The article tells the stories of five compositions and one arrangement by non-Japanese composers, first to credit composers’ varied and personal responses to this common concern and, second, to discern broad, culturally syncretic traditions of nature mimesis and other, more abstract, ideas about the naturalness of sounds and creative processes (which I call musical naturalism). Setting these personal stories and longer histories side by side reveals that composition creates composers (as much as the other way around). Thus it hints at much broader terrain: the refashioning of human nature at the confluence between cosmopolitan cultural circulations and contemporary encounters with the more-than-human world
Parisi Phase in a Neuron
Pattern storage by a single neuron is revisited. Generalizing Parisi's
framework for spin glasses we obtain a variational free energy functional for
the neuron. The solution is demonstrated at high temperature and large relative
number of examples, where several phases are identified by thermodynamical
stability analysis, two of them exhibiting spontaneous full replica symmetry
breaking. We give analytically the curved segments of the order parameter
function and in representative cases compute the free energy, the storage
error, and the entropy.Comment: 4 pages in prl twocolumn format + 3 Postscript figures. Submitted to
Physical Review Letter
Recommended from our members
Spring School on Language, Music, and Cognition: Organizing Events in Time
The interdisciplinary spring school “Language, music, and cognition: Organizing events in time” was held from February 26 to March 2, 2018 at the Institute of Musicology of the University of Cologne. Language, speech, and music as events in time were explored from different perspectives including evolutionary biology, social cognition, developmental psychology, cognitive neuroscience of speech, language, and communication, as well as computational and biological approaches to language and music. There were 10 lectures, 4 workshops, and 1 student poster session.
Overall, the spring school investigated language and music as neurocognitive systems and focused on a mechanistic approach exploring the neural substrates underlying musical, linguistic, social, and emotional processes and behaviors. In particular, researchers approached questions concerning cognitive processes, computational procedures, and neural mechanisms underlying the temporal organization of language and music, mainly from two perspectives: one was concerned with syntax or structural representations of language and music as neurocognitive systems (i.e., an intrapersonal perspective), while the other emphasized social interaction and emotions in their communicative function (i.e., an interpersonal perspective). The spring school not only acted as a platform for knowledge transfer and exchange but also generated a number of important research questions as challenges for future investigations
Advances in tooth agenesis and tooth regeneration
The lack of treatment options for congenital (0.1%) and partial (10%) tooth anomalies highlights the need to develop innovative strategies. Over two decades of dedicated research have led to breakthroughs in the treatment of congenital and acquired tooth loss. We revealed that by inactivating USAG-1, congenital tooth agenesis can be successfully ameliorated during early tooth development and that the inactivation promotes late-stage tooth morphogenesis in double knockout mice. Furthermore, Anti- USAG-1 antibody treatment in mice is effective in tooth regeneration and can be a breakthrough in treating tooth anomalies in humans. With approximately 0.1% of the population suffering from congenital tooth agenesis and 10% of children worldwide suffering from partial tooth loss, early diagnosis will improve outcomes and the quality of life of patients. Understanding the role of pathogenic USAG-1 variants, their interacting gene partners, and their protein functions will help develop critical biomarkers. Advances in next-generation sequencing, mass spectrometry, and imaging technologies will assist in developing companion and predictive biomarkers to help identify patients who will benefit from tooth regeneration
Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition
An extension to a high-order model for the direct isotropic/smectic-A liquid
crystalline phase transition was derived to take into account thermal effects
including anisotropic thermal diffusion and latent heat of phase-ordering.
Multi-scale multi-transport simulations of the non-isothermal model were
compared to isothermal simulation, showing that the presented model extension
corrects the standard Landau-de Gennes prediction from constant growth to
diffusion-limited growth, under shallow quench/undercooling conditions.
Non-isothermal simulations, where meta-stable nematic pre-ordering precedes
smectic-A growth, were also conducted and novel non-monotonic
phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure
- …