437 research outputs found

    Deformations and quasiparticle spectra of nuclei in the nobelium region

    Full text link
    We have performed self-consistent Skyrme Hartree-Fock-Bogolyubov calculations for nuclei close to 254^{254}No. Self-consistent deformations, including β2,4,6,8\beta_{2,4,6,8} as functions of the rotational frequency, were determined for even-even nuclei 246,248,250^{246,248,250}Fm, 252,254^{252,254}No, and 256^{256}Rf. The quasiparticle spectra for N=151 isotones and Z=99 isotopes were calculated and compared with experimental data and the results of Woods-Saxon calculations. We found that our calculations give high-order deformations similar to those obtained for the Woods-Saxon potential, and that the experimental quasiparticle energies are reasonably well reproduced.Comment: 6 pages, 2 figures; ICFN5 conference proceeding

    Collective vibrational states with fast iterative QRPA method

    Full text link
    An iterative method we previously proposed to compute nuclear strength functions is developed to allow it to accurately calculate properties of individual nuclear states. The approach is based on the quasi-particle-random-phase approximation (QRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method gives substantial advantages over conventional QRPA calculations with regards to the computational cost. The method is used to calculate excitation energies and decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes using three different Skyrme interactions and a separable gaussian pairing force.Comment: 10 pages, 11 figure

    Study of odd-mass N=82 isotones with realistic effective interactions

    Get PDF
    The microscopic quasiparticle-phonon model, MQPM, is used to study the energy spectra of the odd Z=5363Z=53 - 63, N=82 isotones. The results are compared with experimental data, with the extreme quasiparticle-phonon limit and with the results of an unrestricted 2s1d0g7/20h11/22s1d0g_{7/2}0h_{11/2} shell model (SM) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the Q^\hat{Q}-box method whereas for the MQPM the effective interaction is defined by the G-matrix.Comment: Elsevier latex style espart, 26 pages, submitted to Nuclear Physics

    Decoupling for ecological sustainability : A categorisation and review of research literature

    Get PDF
    The idea of decoupling "environmental bads" from "economic goods" has been proposed as a path towards sustainability by organizations such as the OECD and UN. Scientific consensus reports on environmental impacts (e.g., greenhouse gas emissions) and resource use give an indication of the kind of decoupling needed for ecological sustainability: global, absolute, fast-enough and long-enough. This goal gives grounds for a categorisation of the different kinds of decoupling, with regard to their relevance. We conducted a survey of recent (1990-2019) research on decoupling on Web of Science and reviewed the results in the research according to the categorisation. The reviewed 179 articles contain evidence of absolute impact decoupling, especially between CO2 (and SOX) emissions and evidence on geographically limited (national level) cases of absolute decoupling of land and blue water use from GDP, but not of economy-wide resource decoupling, neither on national nor international scales. Evidence of the needed absolute global fast-enough decoupling is missing.Peer reviewe

    Sectoral low-carbon roadmaps and the role of forest biomass in Finland's carbon neutrality 2035 target

    Get PDF
    As a part of its climate policy, Finnish government facilitated the creation of low-carbon roadmaps by sectors of industry. The roadmap process and the roadmaps were promoted as an international benchmark in COP26. They also form a part of the policy process towards the government's goal of carbon neutrality by 2035. We analyse the need and role of biomass use contained in the roadmaps of the key sectors and compare it to data on available forest biomass. The combined need for forest biomass in the roadmaps is well over 140 Mm(3), which is over double that of the logging level in 2019, and drastically over the roadmaps' projection of future sustainable yield. This creates a challenge for the carbon neutrality goal via the loss of carbon sinks in forests, risking the carbon neutrality target and other sustainability goals. Although, up to date, the roadmaps present the most detailed picture of industrial transformation towards carbon neutrality in an EU member state, they are made unrealistic by the omission of a comprehensive material perspective. The addition of such a perspective and a clear setting of boundaries would increase the viability of the roadmaps as a policy tool.Peer reviewe

    Neutron-Proton Correlations in an Exactly Solvable Model

    Get PDF
    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double beta decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller beta+ strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe
    corecore