45 research outputs found

    Aroma map in European woodland strawberry

    Get PDF
    Woodland strawberry (Fragaria vesca, 2x) is the diploid closest ancestor of the cultivated strawberry (Fragaria ´ annassa, 8x) and the model species for genetic studies in the Fragaria genus. It is naturally distributed all across Europe and it is appreciated for their delicate aroma and flavor. Aiming to describe the genetic and organoleptic diversity of European woodland strawberry and decipher the genetic control of its characteristic volatile compounds, we have sequenced and metabolically-phenotyped a diverse collection of 199 geographically distant European accessions. The metabolic profiling of the lines includes a set of 100 unambiguosly identified volatiles. This study has revealed genetic and metabolic differences between subpopulations with different geographical origin. In addition, Genome Wide Association Analysis points to several candidate genetic regions controlling the accumulation of volatiles compounds sharing common biosynthetic pathways. Specifically, we have detected SNPs associated to the accumulation of methyl ketones and their corresponding alcohols mapping to a small region of chromosome 4 with a reduced set of candidate genes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Aroma Map in European Woodland Strawberry

    Get PDF
    Woodland strawberry (Fragaria vesca, 2x) is a wild, diploid ancestor of the cultivated strawberry (Fragaria ananassa, 8x), the most economically important berry crop. F. vesca is very appreciated for its intense fruity aroma, characterized by a unique combination of volatile compounds, which are absent, or accumulated at lower rates, in the commercial strawberry varieties. In addition, F. vesca presents a wide genetic diversity and it is naturally distributed across Europe. Our aim is to describe the genetic and organoleptic diversity of European woodland strawberry and decipher the genetic control of its characteristic volatile compounds. A collection of 199 accessions representing the European genetic diversity of F. vesca has been re-sequenced obtaining a set of 1.8M SNPs. In addition, the volatilome of ripe fruits was quantified in two independent harvests by GCMS providing a set of 100 unambiguously identified compounds. This study has revealed genetic and metabolic differences between subpopulations with different geographical origin. In addition, Genome-Wide Association Analysis has revealed genetic regions significantly associated to the accumulation of several metabolites that contribute to strawberry aroma, such as terpenes (alpha-farnesene, alpha-pinene, alpha-terpineol, linalool, myrtenol), lactones (g-decalactone), eugenol and mesifurane among others.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Evolutionary Genomics of Structural Variation in Asian Rice (Oryza sativa) Domestication

    Get PDF
    Structural variants (SVs) are a largely unstudied feature of plant genome evolution, despite the fact that SVs contribute substantially to phenotypes. In this study, we discovered SVs across a population sample of 347 high-coverage, resequenced genomes of Asian rice (Oryza sativa) and its wild ancestor (O. rufipogon). In addition to this short-read data set, we also inferred SVs from whole-genome assemblies and long-read data. Comparisons among data sets revealed different features of genome variability. For example, genome alignment identified a large (∼4.3 Mb) inversion in indica rice varieties relative to japonica varieties, and long-read analyses suggest that ∼9% of genes from the outgroup (O. longistaminata) are hemizygous. We focused, however, on the resequencing sample to investigate the population genomics of SVs. Clustering analyses with SVs recapitulated the rice cultivar groups that were also inferred from SNPs. However, the site-frequency spectrum of each SV type—which included inversions, duplications, deletions, translocations, and mobile element insertions—was skewed toward lower frequency variants than synonymous SNPs, suggesting that SVs may be predominantly deleterious. Among transposable elements, SINE and mariner insertions were found at especially low frequency. We also used SVs to study domestication by contrasting between rice and O. rufipogon. Cultivated genomes contained ∼25% more derived SVs and mobile element insertions than O. rufipogon, indicating that SVs contribute to the cost of domestication in rice. Peaks of SV divergence were enriched for known domestication genes, but we also detected hundreds of genes gained and lost during domestication, some of which were enriched for traits of agronomic interest.Peer reviewe

    Independent mutations in a single locus, the transcriptional factor MYB10, control natural variation in fruit color among Fragaria species

    Get PDF
    External and internal fruit color are important traits in strawberry (Fragaria spp.) breeding programs, where different preferences are sought depending on whether the fruits are produced for fresh consumption or processing. Therefore, there is a great interest in the development of predictive markers that effectively speed the development of new cultivars with increased consumer acceptance and/or which address processed fruit industry´s preferences. In order to identify loci controlling fruit color variation, two mapping populations were generated: one crossing diploid F. vesca parentals and another interspecific population between two octoploid species: the cultivated and the Chilean strawberry, F. x ananassa and F. chiloensis. Both populations allowed the detection of a QTL spanning a region of the F. vesca linkage group 1 (LG I) that includes the MYB10 gene, a known key regulator of anthocyanin biosynthesis. Mapping by sequencing in the F. vesca population revealed an LTR retrotransposon inserted in the third exon of FvMYB10, which produces a premature stop codon, and co-segregates with white fruits in the entire population. Genotyping by Sanger sequencing of additional white-fruited F. vesca accessions resulted in the identification of another three independent mutations in MYB10, two of them not previously described1. In octoploid strawberry, a mayor QTL on LG I-3 controls about 55% variation in internal flesh color and is associated with an insertion in the promoter region of FcMYB10. Similar insertions have been detected in other F. chiloensis accessions bearing white fruits. In all cases, transient over-expression of FvMYB10 restored anthocyanin biosynthesis and red color in fruit flesh and skin, indicating that lack of function of MYB10 was the underlying cause of white fruits in all analyzed cases

    Identificación y caracterización de genes implicados en la maduración y la calidad de la fresa

    Get PDF
    Ripening is a critical step for the development of flavor quality in fruits. This character has significantly declined in many fleshy fruits over recent decades. This is particularly significant in strawberry (Fragaria × ananassa), where current cultivars are derived from a narrow germplasm collection. Improving fruit quality requires two important breakthroughs: 1) a precise understanding of the fruit ripening process that will allow the targeting of relevant genes, and 2) the identification of novel alleles responsible for fruit quality traits. In our project (TRANSFR-Q, Starting Grant-ERC), we aim at the identification and characterization of key transcription factors involved in fruit ripening regulation and their target genes, in order to infer the Gene Regulatory Network controlling this process. On the other hand, we are carrying out a Genome-Wide Association Study using a germplasm collection of the woodland strawberry (Fragaria vesca) in order to identify loci involved in important traits such as aroma, fruit size, and resistance to pathogens. Finally, we have implemented the use of the genome-editing tool CRISPR/Cas9 in the cultivated strawberry, which we expect to open opportunities for engineering this species to improve traits of economic importance.ERC Starting Grant ERC-2014-StG 63813

    Transcriptional regulatory network controlling strawberry fruit ripening and quality

    Get PDF
    Ripening is a critical step for the development of flavor quality in fruits. This character has significantly declined in many fleshy fruits over recent decades. This is particularly significant in strawberry (Fragaria × ananassa), where current cultivars are derived from a narrow germplasm collection. Improving fruit quality requires two important breakthroughs: 1) a precise understanding of the fruit ripening process that will allow the targeting of relevant genes, and 2) the identification of novel alleles responsible for fruit quality traits. In our project, we aim at the identification and characterization of key transcription factors involved in fruit ripening regulation and their target genes, in order to infer the Gene Regulatory Network controlling this process. On the other hand, we are carrying out a Genome-Wide Association Study using a germplasm collection of the woodland strawberry (Fragaria vesca) in order to identify loci involved in important traits such as aroma, fruit size or resistance to pathogens. Finally, we have implemented the use of the genome-editing tool CRISPR/Cas9 in the cultivated strawberry, which we expect it might open opportunities for engineering this species to improve traits of economic importance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Study of Transcriptional Regulatory Network Controlling Strawberry Fruit Ripening and Quality

    Get PDF
    Ripening is a critical step for the development of flavor quality in fruits. This character has significantly declined in many fleshy fruits over recent decades. This is particularly significant in strawberry (Fragaria × ananassa), where current cultivars are derived from a narrow germplasm collection. Improving fruit quality requires two important breakthroughs: 1) a precise understanding of the fruit ripening process that will allow the targeting of relevant genes, and 2) the identification of novel alleles responsible for fruit quality traits. In our project we aim at the identification and characterization of key transcription factors involved in fruit ripening regulation and their target genes, in order to infer the Gene Regulatory Network controlling this process. On the other hand, we are carrying out a Genome-Wide Association Study using a germplasm collection of the woodland strawberry (Fragaria vesca) in order to identify loci involved in important traits such as aroma, fruit size, and resistance to pathogens. Finally, we have implemented the use of the genome-editing tool CRISPR/Cas9 in the cultivated strawberry, which we expect to open opportunities for engineering this species to improve traits of economic importance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Allelic Variation of MYB10 Is the Major Force Controlling Natural Variation in Skin and Flesh Color in Strawberry (Fragaria spp.) Fruit

    Get PDF
    Independent mutations in the transcription factor MYB10 cause most of the anthocyanin variation observed in diploid woodland strawberry (Fragaria vesca) and octoploid cultivated strawberry (Fragaria x ananassa). The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F. xananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.Peer reviewe

    Allelic Variation of MYB10 is the Major Force Controlling Natural Variation of Skin and Flesh Color in Strawberry (Fragaria spp.) fruit

    Get PDF
    Anthocyanins are the principal color-producing compounds synthesized in developing fruits of strawberry (Fragaria spp.). Substantial natural variation in color have been observed in fruits of diploid and octoploid accessions, resulting from distinct accumulation and distribution of anthocyanins in fruits. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 has been shown as the main activator in strawberry fruit. Here, we show that MYB10 mutations cause most of the anthocyanin variation observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F. ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsytransposon insertion in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional lossof-function MYB10 mutations were identified among geographically diverse whitefruited F. vesca ecotypes. Genetic and transcriptomic analyses in octoploid Fragaria spp. revealed that FaMYB10-2, one of three MYB10 homoeologs identified, residing in the F. iinumae-derived subgenome, regulates the biosynthesis of anthocyanins in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression and anthocyanin accumulation. Our findings suggest that putative cis regulatory elements provided by FaEnSpm-2 are required for high and ectopic MYB10-2 expression and induction of anthocyanin biosynthesis in fruit flesh. We developed MYB10-2 (sub-genome) specific DNA markers for marker-assisted selection that accurately predicted anthocyanin phenotypes in octoploid segregating populations

    Genetic consequences of directional selection in <em>Arabidopsis lyrata</em>

    No full text
    Abstract Plants and animals colonized Northern Europe after the last Ice Age from different refugia, not covered by the ice sheet. Many plants, such as the northern rock cress (Arabidopsis lyrata ssp. petraea) adapted to the short growing season in the North. We thus expect that colonization of the new environment was accompanied by directional selection for traits conferring this adaptation. In this thesis I studied whether recent directional selection can be detected in two important genes, PHYTOCHROME A (PHYA) and FLOWERING LOCUS C1 (FLC1), related to the flowering time pathway. To detect directional selection, I compared DNA sequence variation from the samples of a southern (Plech, Germany) and a northern (Spiterstulen, Norway) population. I also studied the current response potential to changing conditions in the marginal Spiterstulen population. Adaptation potential was characterized by assessing plasticity and amount of additive genetic variation, focusing on flowering traits. In addition, associations of 21 flowering time candidate genes for phenological and fitness traits were studied. There were several lines of evidence for recent directional selection in both candidate genes, PHYA and FLC1, in the northern Spiterstulen population Variation was strongly reduced around both genes and in addition they were highly differentiated between populations. In the Spiterstulen population there was a remarkable reduction in additive genetic variation for flowering traits, for instance when compared with morphological traits. On the other hand, phenological traits showed high plasticity. Some of the photoperiodic pathway genes showed association to flowering or reproductive fitness. The results suggest that directional selection during the colonization of the northern areas has impacted the two studied genes. Genetic changes were likely involved in altered photoperiodic and vernalization responses which might be adaptive for a short growing season. Further, directional selection was probably responsible for reducing additive genetic variation in flowering traits. Because there was only little genetic variation, adaptation to future environmental change of the marginal Spiterstulen population is likely to rely largely on plastic reactions to environmental signals, or tracking the environment by dispersal.Tiivistelmä Kasvit ja eläimet levittäytyivät Pohjois-Eurooppaan viimeisen jääkauden jälkeen mannerjäätikön ulkopuolella jääneistä refugioista. Useat kasvit, kuten idänpitkäpalko (Arabidopsis lyrata ssp. petraea) sopeutuivat pohjoisen lyhyeen kasvukauteen. On syytä olettaa, että suuntaava valinta vaikutti sopeutumisessa tärkeisiin ominaisuuksiin. Tässä väitöskirjassa tutkin voidaanko suuntaavan valinnan aiheuttamia jalanjälkiä löytää kahdesta tärkeästä kukkimisaikageenistä, FYTOKROMI A (PHYA) ja FLOWERING LOCUS C1 (FLC1) geeneistä. Tätä varten vertasin DNA sekvenssimuuntelua pohjoisessa (Norja) ja eteläisessä (Saksa) populaatiossa, kiinnittäen erityisesti huomiota geneettisen muuntelun määrään ja erilaistumiseen. Lisäksi tutkin miten Spiterstulenin reunapopulaatio voi vastata tulevaisuudessa muuttuvaan ympäristöön. Sopeutumispotentiaalia arvioitiin sekä fenotyyppisen plastisuuden että additiivisen geneettisen muuntelun määrällä. Lisäksi tutkin miten vaihtelu 21 kukkimisaikageenissä liittyy fenologisiin ja kelpoisuusominaisuuksiin. Useat merkit viittasivat siihen, että suuntaava valinta oli vaikuttanut kummassakin tutkitussa geenissä. Muuntelu oli vähentynyt voimakkaasti kumpaakin geeniä ympäröiviltä kromosomialueilta, jotka olivat myös selkeästi erilaistuneet. Additiivinen geneettinen muuntelu oli selvästi vähentynyt kukkimisominaisuuksissa verrattuna morfologisiin ominaisuuksiin, mahdollisesti suuntaavan valinnan johdosta. Kukkimisominaisuudet olivat kuitenkin plastisia. Jotkin valojaksoreitin geenit vaikuttivat sekä kukkimiseen että lisääntymiskykyyn. Nämä tulokset osoittavat että suuntaava valinta vaikutti kahteen tutkittuun geeniin pohjoiseen levittäytymisen aikana. Geneettiset muutokset liittyivät todennäköisesti muuttuneisiin valojakso-, ja vernalisaatiovasteisiin, jotka saattoivat edistää sopeutumista lyhyeen kasvukauteen. Koska geneettistä muuntelua oli vain hyvin vähän, fenotyyppisellä plastisuudella on todennäköisesti tärkeä rooli sopeutumisessa muuttuvaan ympäristöön Spiterstulenin reunapopulaatiossa
    corecore