431 research outputs found
Simulating STM transport in alkanes from first principles
Simulations of scanning tunneling microscopy measurements for molecules on
surfaces are traditionally based on a perturbative approach, most typically
employing the Tersoff-Hamann method. This assumes that the STM tip is far from
the sample so that the two do not interact with each other. However, when the
tip gets close to the molecule to perform measurements, the electrostatic
interplay between the tip and substrate may generate non-trivial potential
distribution, charge transfer and forces, all of which may alter the electronic
and physical structure of the molecule. These effects are investigated with the
ab initio quantum transport code SMEAGOL, combining non-equilibrium Green's
functions formalism with density functional theory. In particular, we
investigate alkanethiol molecules terminated with either CH3 or CF3 end-groups
on gold surfaces, for which recent experimental data are available. We discuss
the effects connected to the interaction between the STM tip and the molecule,
as well as the asymmetric charge transfer between the molecule and the
electrodes.Comment: 10 pages, 18 figure
Efficient atomic self-interaction correction scheme for non-equilibrium quantum transport
Density functional theory calculations of electronic transport based on local
exchange and correlation functionals contain self-interaction errors. These
originate from the interaction of an electron with the potential generated by
itself and may be significant in metal-molecule-metal junctions due to the
localized nature of the molecular orbitals. As a consequence, insulating
molecules in weak contact with metallic electrodes erroneously form highly
conducting junctions, a failure similar to the inability of local functionals
of describing Mott-Hubbard insulators. Here we present a fully self-consistent
and still computationally undemanding self-interaction correction scheme that
overcomes these limitations. The method is implemented in the Green's function
non-equilibrium transport code Smeagol and applied to the prototypical cases of
benzene molecules sandwiched between gold electrodes. The self-interaction
corrected Kohn-Sham highest occupied molecular orbital now reproduces closely
the negative of the molecular ionization potential and is moved away from the
gold Fermi energy. This leads to a drastic reduction of the low bias current in
much better agreement with experiments.Comment: 4 pages, 5 figure
AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids
Accelerating the calculations of finite-temperature thermodynamic properties is a major challenge for rational materials design. Reliable methods can be quite expensive, limiting their applicability in autonomous high-throughput workflows. Here, the three-phonon quasiharmonic approximation (QHA) method is introduced, requiring only three phonon calculations to obtain a thorough characterization of the material. Leveraging a Taylor expansion of the phonon frequencies around the equilibrium volume, the method efficiently resolves the volumetric thermal expansion coefficient, specific heat at constant pressure, the enthalpy, and bulk modulus. Results from the standard QHA and experiments corroborate the procedure, and additional comparisons are made with the recently developed self-consistent QHA. The three approaches—three-phonon, standard, and self-consistent QHAs—are all included within the open-source ab initio framework aflow, allowing the automated determination of properties with various implementations within the same framework
Electronic structure of the Au/benzene-1,4-dithiol/Au transport interface: Effects of chemical bonding
We present results of electronic structure calculations for well-relaxed
Au/benzene-1,4-dithiol/Au molecular contacts, based on density functional
theory and the generalized gradient approximation. Electronic states in the
vicinity of the Fermi energy are mainly of Au 5d and S 3p symmetry, whereas
contributions of C 2p states are very small. Hybridization between C 2p
orbitals within the benzene substructure is strongly suppressed due to S-C
bonding. In agreement with experimental findings, this corresponds to a
significantly reduced conductance of the molecular contact.Comment: 7 pages, 5 figures, accepted by Chemical Physics Letter
High-Throughput Computational Screening of thermal conductivity, Debye temperature and Gr\"uneisen parameter using a quasi-harmonic Debye Model
The quasi-harmonic Debye approximation has been implemented within the AFLOW
and Materials Project frameworks for high-throughput computational science
(Automatic Gibbs Library, AGL), in order to calculate thermal properties such
as the Debye temperature and the thermal conductivity of materials. We
demonstrate that the AGL method, which is significantly cheaper computationally
compared to the fully ab initio approach, can reliably predict the ordinal
ranking of the thermal conductivity for several different classes of
semiconductor materials. We also find that for the set of 182 materials
investigated in this work the Debye temperature, calculated with the AGL, is
often a better predictor of the ordinal ranking of the experimental thermal
conductivities than the calculated thermal conductivity. The Debye temperature
is thus a potential descriptor for high-throughput screening of the thermal
properties of materials.Comment: 15 pages, 9 figures, 12 table
Electrical transport through a mechanically gated molecular wire
A surface-adsorbed molecule is contacted with the tip of a scanning tunneling
microscope (STM) at a pre-defined atom. On tip retraction, the molecule is
peeled off the surface. During this experiment, a two-dimensional differential
conductance map is measured on the plane spanned by the bias voltage and the
tip-surface distance. The conductance map demonstrates that tip retraction
leads to mechanical gating of the molecular wire in the STM junction. The
experiments are compared with a detailed ab initio simulation. We find that
density functional theory (DFT) in the local density approximation (LDA)
describes the tip-molecule contact formation and the geometry of the molecular
junction throughout the peeling process with predictive power. However, a
DFT-LDA-based transport simulation following the non-equilibrium Green's
functions (NEGF) formalism fails to describe the behavior of the differential
conductance as found in experiment. Further analysis reveals that this failure
is due to the mean-field description of electron correlation in the local
density approximation. The results presented here are expected to be of general
validity and show that, for a wide range of common wire configurations,
simulations which go beyond the mean-field level are required to accurately
describe current conduction through molecules. Finally, the results of the
present study illustrate that well-controlled experiments and concurrent ab
initio transport simulations that systematically sample a large configuration
space of molecule-electrode couplings allow the unambiguous identification of
correlation signatures in experiment.Comment: 31 pages, 10 figure
Self-interaction errors in density functional calculations of electronic transport
All density functional calculations of single-molecule transport to date have
used continuous exchange-correlation approximations. The lack of derivative
discontinuity in such calculations leads to the erroneous prediction of
metallic transport for insulating molecules. A simple and computationally
undemanding atomic self-interaction correction greatly improves the agreement
with experiment for the prototype Au/dithiolated-benzene/Au junction.Comment: 4 pages. Also available at http://www.smeagol.tcd.i
High-entropy high-hardness metal carbides discovered by entropy descriptors
High-entropy materials have attracted considerable interest due to the
combination of useful properties and promising applications. Predicting their
formation remains the major hindrance to the discovery of new systems. Here we
propose a descriptor - entropy forming ability - for addressing
synthesizability from first principles. The formalism, based on the energy
distribution spectrum of randomized calculations, captures the accessibility of
equally-sampled states near the ground state and quantifies configurational
disorder capable of stabilizing high-entropy homogeneous phases. The
methodology is applied to disordered refractory 5-metal carbides - promising
candidates for high-hardness applications. The descriptor correctly predicts
the ease with which compositions can be experimentally synthesized as rock-salt
high-entropy homogeneous phases, validating the ansatz, and in some cases,
going beyond intuition. Several of these materials exhibit hardness up to 50%
higher than rule of mixtures estimations. The entropy descriptor method has the
potential to accelerate the search for high-entropy systems by rationally
combining first principles with experimental synthesis and characterization.Comment: 12 pages, 2 figure
- …
