431 research outputs found

    Simulating STM transport in alkanes from first principles

    Full text link
    Simulations of scanning tunneling microscopy measurements for molecules on surfaces are traditionally based on a perturbative approach, most typically employing the Tersoff-Hamann method. This assumes that the STM tip is far from the sample so that the two do not interact with each other. However, when the tip gets close to the molecule to perform measurements, the electrostatic interplay between the tip and substrate may generate non-trivial potential distribution, charge transfer and forces, all of which may alter the electronic and physical structure of the molecule. These effects are investigated with the ab initio quantum transport code SMEAGOL, combining non-equilibrium Green's functions formalism with density functional theory. In particular, we investigate alkanethiol molecules terminated with either CH3 or CF3 end-groups on gold surfaces, for which recent experimental data are available. We discuss the effects connected to the interaction between the STM tip and the molecule, as well as the asymmetric charge transfer between the molecule and the electrodes.Comment: 10 pages, 18 figure

    Efficient atomic self-interaction correction scheme for non-equilibrium quantum transport

    Full text link
    Density functional theory calculations of electronic transport based on local exchange and correlation functionals contain self-interaction errors. These originate from the interaction of an electron with the potential generated by itself and may be significant in metal-molecule-metal junctions due to the localized nature of the molecular orbitals. As a consequence, insulating molecules in weak contact with metallic electrodes erroneously form highly conducting junctions, a failure similar to the inability of local functionals of describing Mott-Hubbard insulators. Here we present a fully self-consistent and still computationally undemanding self-interaction correction scheme that overcomes these limitations. The method is implemented in the Green's function non-equilibrium transport code Smeagol and applied to the prototypical cases of benzene molecules sandwiched between gold electrodes. The self-interaction corrected Kohn-Sham highest occupied molecular orbital now reproduces closely the negative of the molecular ionization potential and is moved away from the gold Fermi energy. This leads to a drastic reduction of the low bias current in much better agreement with experiments.Comment: 4 pages, 5 figure

    AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids

    Get PDF
    Accelerating the calculations of finite-temperature thermodynamic properties is a major challenge for rational materials design. Reliable methods can be quite expensive, limiting their applicability in autonomous high-throughput workflows. Here, the three-phonon quasiharmonic approximation (QHA) method is introduced, requiring only three phonon calculations to obtain a thorough characterization of the material. Leveraging a Taylor expansion of the phonon frequencies around the equilibrium volume, the method efficiently resolves the volumetric thermal expansion coefficient, specific heat at constant pressure, the enthalpy, and bulk modulus. Results from the standard QHA and experiments corroborate the procedure, and additional comparisons are made with the recently developed self-consistent QHA. The three approaches—three-phonon, standard, and self-consistent QHAs—are all included within the open-source ab initio framework aflow, allowing the automated determination of properties with various implementations within the same framework

    Electronic structure of the Au/benzene-1,4-dithiol/Au transport interface: Effects of chemical bonding

    Full text link
    We present results of electronic structure calculations for well-relaxed Au/benzene-1,4-dithiol/Au molecular contacts, based on density functional theory and the generalized gradient approximation. Electronic states in the vicinity of the Fermi energy are mainly of Au 5d and S 3p symmetry, whereas contributions of C 2p states are very small. Hybridization between C 2p orbitals within the benzene substructure is strongly suppressed due to S-C bonding. In agreement with experimental findings, this corresponds to a significantly reduced conductance of the molecular contact.Comment: 7 pages, 5 figures, accepted by Chemical Physics Letter

    High-Throughput Computational Screening of thermal conductivity, Debye temperature and Gr\"uneisen parameter using a quasi-harmonic Debye Model

    Full text link
    The quasi-harmonic Debye approximation has been implemented within the AFLOW and Materials Project frameworks for high-throughput computational science (Automatic Gibbs Library, AGL), in order to calculate thermal properties such as the Debye temperature and the thermal conductivity of materials. We demonstrate that the AGL method, which is significantly cheaper computationally compared to the fully ab initio approach, can reliably predict the ordinal ranking of the thermal conductivity for several different classes of semiconductor materials. We also find that for the set of 182 materials investigated in this work the Debye temperature, calculated with the AGL, is often a better predictor of the ordinal ranking of the experimental thermal conductivities than the calculated thermal conductivity. The Debye temperature is thus a potential descriptor for high-throughput screening of the thermal properties of materials.Comment: 15 pages, 9 figures, 12 table

    Electrical transport through a mechanically gated molecular wire

    Get PDF
    A surface-adsorbed molecule is contacted with the tip of a scanning tunneling microscope (STM) at a pre-defined atom. On tip retraction, the molecule is peeled off the surface. During this experiment, a two-dimensional differential conductance map is measured on the plane spanned by the bias voltage and the tip-surface distance. The conductance map demonstrates that tip retraction leads to mechanical gating of the molecular wire in the STM junction. The experiments are compared with a detailed ab initio simulation. We find that density functional theory (DFT) in the local density approximation (LDA) describes the tip-molecule contact formation and the geometry of the molecular junction throughout the peeling process with predictive power. However, a DFT-LDA-based transport simulation following the non-equilibrium Green's functions (NEGF) formalism fails to describe the behavior of the differential conductance as found in experiment. Further analysis reveals that this failure is due to the mean-field description of electron correlation in the local density approximation. The results presented here are expected to be of general validity and show that, for a wide range of common wire configurations, simulations which go beyond the mean-field level are required to accurately describe current conduction through molecules. Finally, the results of the present study illustrate that well-controlled experiments and concurrent ab initio transport simulations that systematically sample a large configuration space of molecule-electrode couplings allow the unambiguous identification of correlation signatures in experiment.Comment: 31 pages, 10 figure

    Self-interaction errors in density functional calculations of electronic transport

    Full text link
    All density functional calculations of single-molecule transport to date have used continuous exchange-correlation approximations. The lack of derivative discontinuity in such calculations leads to the erroneous prediction of metallic transport for insulating molecules. A simple and computationally undemanding atomic self-interaction correction greatly improves the agreement with experiment for the prototype Au/dithiolated-benzene/Au junction.Comment: 4 pages. Also available at http://www.smeagol.tcd.i

    High-entropy high-hardness metal carbides discovered by entropy descriptors

    Get PDF
    High-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor - entropy forming ability - for addressing synthesizability from first principles. The formalism, based on the energy distribution spectrum of randomized calculations, captures the accessibility of equally-sampled states near the ground state and quantifies configurational disorder capable of stabilizing high-entropy homogeneous phases. The methodology is applied to disordered refractory 5-metal carbides - promising candidates for high-hardness applications. The descriptor correctly predicts the ease with which compositions can be experimentally synthesized as rock-salt high-entropy homogeneous phases, validating the ansatz, and in some cases, going beyond intuition. Several of these materials exhibit hardness up to 50% higher than rule of mixtures estimations. The entropy descriptor method has the potential to accelerate the search for high-entropy systems by rationally combining first principles with experimental synthesis and characterization.Comment: 12 pages, 2 figure
    corecore