56 research outputs found

    Electromagnetic constraints on a melt region beneath the central Mariana back-arc spreading ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q10017, doi:10.1029/2012GC004326.An electrical resistivity profile across the central Mariana subduction system shows high resistivity in the upper mantle beneath the back-arc spreading ridge where melt might be expected to exist. Although seismic data are equivocal on the extent of a possible melt region, the question arises as to why a 2-D magnetotelluric (MT) survey apparently failed to image any melt. We have run forward models and inversions that test possible 3-D melt geometries that are consistent with the MT data and results of other studies from the region, and that we use to place upper bounds on the possible extent of 3-D melt region beneath the spreading center. Our study suggests that the largest melt region that was not directly imaged by the 2-D MT data, but that is compatible with the observations as well as the likely effects of melt focusing, has a 3-D shape on a ridge-segment scale focused toward the spreading center and a resistivity of 100 Ω-m that corresponds to ∼0.1–∼1% interconnected silicate melt embedded in a background resistivity of ∼500 Ω-m. In contrast to the superfast spreading southern East Pacific Rise, the 3-D melt region suggests that buoyant mantle upwelling on a ridge-segment scale is the dominant process beneath the slow-spreading central Mariana back-arc. A final test considers whether the inability to image a 3-D melt region was a result of the 2-D survey geometry. The result reveals that the 2-D transect completed is useful to elucidate a broad range of 3-D melt bodies.TM and NS are supported by the scientific program of “TAIGA” (Trans-crustal Advection and In situ reaction of Global sub-seafloor Aquifer)” sponsored by the MEXT of Japan, and are also supported by the JSPS for Grant-In-Aid for Scientific Research (21244070). Participation in the Marianas experiment by RLE and ADC was supported by NSF grant OCE0405641.2013-04-2
    corecore