90 research outputs found

    Increased red blood cell deformation in children and adolescents after SARS-CoV-2 infection

    Get PDF
    Severe coronavirus disease 2019 (COVID-19) is associated with hyperinflammation, hypercoagulability and hypoxia. Red blood cells (RBCs) play a key role in microcirculation and hypoxemia and are therefore of special interest in COVID-19 pathophysiology. While this novel disease has claimed the lives of many older patients, it often goes unnoticed or with mild symptoms in children. This study aimed to investigate morphological and mechanical characteristics of RBCs after SARS-CoV-2 infection in children and adolescents by real-time deformability-cytometry (RT-DC), to investigate the relationship between alterations of RBCs and clinical course of COVID-19. Full blood of 121 students from secondary schools in Saxony, Germany, was analyzed. SARS-CoV-2-serostatus was acquired at the same time. Median RBC deformation was significantly increased in SARS-CoV-2-seropositive compared to seronegative children and adolescents, but no difference could be detected when the infection dated back more than 6 months. Median RBC area was the same in seropositive and seronegative adolescents. Our findings of increased median RBC deformation in SARS-CoV-2 seropositive children and adolescents until 6 months post COVID-19 could potentially serve as a progression parameter in the clinical course of the disease with an increased RBC deformation pointing towards a mild course of COVID-19

    Comparative Safety of the BNT162b2 Messenger RNA COVID-19 Vaccine vs Other Approved Vaccines in Children Younger Than 5 Years.

    Get PDF
    Importance SARS-CoV-2 vaccines are authorized for use in most age groups. The safety of SARS-CoV-2 vaccines is unknown in children younger than 5 years. Objective To retrospectively evaluate the safety of the BNT162b2 vaccine used off-label in children younger than 5 years compared with the safety of non-SARS-CoV-2 vaccines in the same sample. Design, Setting, and Participants This investigator-initiated retrospective cohort study included parents or caregivers who registered children for SARS-CoV-2 vaccination in outpatient care facilities in Germany. The study was performed as an authenticated online survey. A total of 19 000 email addresses were contacted from vaccination registration databases between April 14 and May 9, 2022. Inclusion criteria were child age younger than 5 years at the first BNT162b2 vaccination and use of a correct authentication code to prove invitation. Exposures Off-label BNT162b2 vaccination and on-label non-SARS-CoV-2 vaccinations. Main Outcomes and Measures Reported short-term safety data of 1 to 3 doses of 3 to 10 μg BNT162b2 in children from birth to younger than 60 months are presented. Coprimary outcomes were the frequencies of 11 categories of symptoms after vaccination with bivariate analyses and regression models adjusting for age, sex, weight, and height. Results The study included 7806 children (median age, 3 years [IQR, 2-4 years]; 3824 [49.0%] female) who were followed up of for a mean (SD) of 91.4 (38.8) days since first BNT162b2 vaccination (survey response rate, 41.1%). A 10-μg dosage was more frequently associated with local injection-site symptoms compared with lower dosages. In the active-comparator analysis, the probability of any symptoms (odds ratio [OR], 1.62; 95% CI, 1.43-1.84), local symptoms (OR, 1.68; 95% CI, 1.38-2.05), musculoskeletal symptoms (OR, 2.55; 95% CI, 1.32-4.94), dermatologic symptoms (OR, 2.18; 95% CI, 10.7-4.45), or otolaryngologic symptoms (OR, 6.37; 95% CI, 1.50-27.09) were modestly elevated after BNT162b2 compared with non-SARS-CoV-2 vaccines, whereas the probabilities of general symptoms (OR, 0.77; 95% CI, 0.63-0.95) and fever (OR, 0.42; 95% CI, 0.32-0.55) were lower after BNT162b2. Symptoms requiring hospitalization (n = 10) were reported only at BNT162b2 dosages above 3 μg. Conclusions and Relevance In this cohort study, the symptoms reported after BNT162b2 administration were comparable overall to those for on-label non-SARS-CoV-2 vaccines in this cohort of children younger than 5 years. The present data may be used together with prospective licensure studies of BNT162b2 efficacy and safety and could help guide expert recommendations about BNT162b2 vaccinations in this age group

    Streptococcus agalactiae Serotype Distribution and Antimicrobial Susceptibility in Pregnant Women in Gabon, Central Africa

    Get PDF
    Neonatal invasive disease due to Streptococcus agalactiae is life threatening and preventive strategies suitable for resource limited settings are urgently needed. Protective coverage of vaccine candidates based on capsular epitopes will relate to local epidemiology of S. agalactiae serotypes and successful management of critical infections depends on timely therapy with effective antibiotics. This is the first report on serotype distribution and antimicrobial susceptibility of S. agalactiae in pregnant women from a Central African region. Serotypes V, III, and Ib accounted for 88/109 (81%) serotypes and all isolates were susceptible to penicillin and clindamycin while 13% showed intermediate susceptibility to erythromycin

    De novo identification of universal cell mechanics regulators

    Get PDF
    Mechanical proprieties determine many cellular functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors governing cell mechanical phenotype is therefore a subject of great interest. Here we present a mechanomics approach for establishing links between mechanical phenotype changes and the genes involved in driving them. We employ a machine learning-based discriminative network analysis method termed PC-corr to associate cell mechanical states, measured by real-time deformability cytometry (RT-DC), with large-scale transcriptome datasets ranging from stem cell development to cancer progression, and originating from different murine and human tissues. By intersecting the discriminative networks inferred from two selected datasets, we identify a conserved module of five genes with putative roles in the regulation of cell mechanics. We validate the power of the individual genes to discriminate between soft and stiff cell states in silico, and demonstrate experimentally that the top scoring gene, CAV1, changes the mechanical phenotype of cells when silenced or overexpressed. The data-driven approach presented here has the power of de novo identification of genes involved in cell mechanics regulation and paves the way towards engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions

    Absence of Type I Interferon Autoantibodies or Significant Interferon Signature Alterations in Adults With Post-COVID-19 Syndrome

    Get PDF
    Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-β, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS

    Mechanical deformation induces depolarization of neutrophils

    Get PDF
    The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.We acknowledge financial support by the Cambridge Commonwealth Trust (to A.E.E.), the European Research Council (Starting Grant “Light Touch” to J.G.), and the National Institute for Health Research Cambridge Biomedical Research Centre (to E.R.C.). C.S. is a Wellcome Trust Postdoctoral Clinical Research Fellow (101692MA), and C.F. is a Medical Research Council Clinical Training Fellow

    Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood

    Get PDF
    Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis

    Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus

    Get PDF
    Funder: NHLI FoundationFunder: NIHR Imperial Biomedical Research Centre; FundRef: http://dx.doi.org/10.13039/501100013342Funder: National Heart Lung and Blood InstituteFunder: Medical Research Council; FundRef: http://dx.doi.org/10.13039/501100000265Funder: National Institute of Biomedical Imaging and Bioengineering; FundRef: http://dx.doi.org/10.13039/100000070Funder: Gates Cambridge ScholarshipFunder: NIH/OXCAM FellowshipObjectives: Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. Methods: Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. Results: Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. Conclusions: Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy
    corecore