2,796 research outputs found
Hidden IR structures in NGC 40: signpost of an ancient born-again event
We present the analysis of infrared (IR) observations of the planetary nebula
NGC 40 together with spectral analysis of its [WC]-type central star HD 826.
Spitzer IRS observations were used to produce spectral maps centred at
polycyclic aromatic hydrocarbons (PAH) bands and ionic transitions to compare
their spatial distribution. The ionic lines show a clumpy distribution of
material around the main cavity of NGC 40, with the emission from [Ar II] being
the most extended, whilst the PAHs show a rather smooth spatial distribution.
Analysis of ratio maps shows the presence of a toroidal structure mainly seen
in PAH emission, but also detected in a Herschel PACS 70 mic image. We argue
that the toroidal structure absorbs the UV flux from HD 826, preventing the
nebula to exhibit lines of high-excitation levels as suggested by previous
authors. We discuss the origin of this structure and the results from the
spectral analysis of HD 826 under the scenario of a late thermal pulse.Comment: 10 pages, 10 figures; Accepted to MNRA
Weak magnetic fields in central stars of planetary nebulae?
It is not yet clear whether magnetic fields play an essential role in shaping
planetary nebulae (PNe), or whether stellar rotation alone and/or a close
binary companion can account for the variety of the observed nebular
morphologies. In a quest for empirical evidence verifying or disproving the
role of magnetic fields in shaping PNe, we follow up on previous attempts to
measure the magnetic field in a representative sample of PN central stars. We
obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of
twelve bright central stars of PNe with different morphology, including two
round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets
are Wolf-Rayet type central stars. For the majority of the observed central
stars, we do not find any significant evidence for the existence of surface
magnetic fields. However, our measurements may indicate the presence of weak
mean longitudinal magnetic fields of the order of 100 Gauss in the central star
of the young elliptical planetary nebula IC 418, as well as in the Wolf-Rayet
type central star of the bipolar nebula Hen2-113 and the weak emission line
central star of the elliptical nebula Hen2-131. A clear detection of a 250 G
mean longitudinal field is achieved for the A-type companion of the central
star of NGC 1514. Some of the central stars show a moderate night-to-night
spectrum variability, which may be the signature of a variable stellar wind
and/or rotational modulation due to magnetic features. We conclude that strong
magnetic fields of the order of kG are not widespread among PNe central stars.
Nevertheless, simple estimates based on a theoretical model of magnetized wind
bubbles suggest that even weak magnetic fields below the current detection
limit of the order of 100 G may well be sufficient to contribute to the shaping
of PNe throughout their evolution.Comment: 16 pages, 11 figures, 3 tables, accepted for publication in A&A;
References updated, minor correction
On the Weak-Wind Problem in Massive Stars: X-ray Spectra Reveal a Massive Hot Wind in \mu\ Columbae
\mu\ Columbae is a prototypical weak-wind O-star for which we have obtained a
high-resolution X-ray spectrum with the Chandra LETG/ACIS-S instrument and a
low resolution spectrum with Suzaku. This allows us, for the first time, to
investigate the role of X-rays on the wind structure in a bona fide weak-wind
system and to determine whether there actually is a massive, hot wind. The
X-ray emission measure indicates that the outflow is an order of magnitude
greater than that derived from UV lines and is commensurate with the nominal
wind-luminosity relationship for O-stars. Therefore, the ``weak-wind
problem''---identified from cool wind UV/optical spectra---is largely resolved
by accounting for the hot wind seen in X-rays. From X-ray line profiles,
Doppler shifts, and relative strengths, we find that this weak-wind star is
typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically
confined plasma---the spectrum is soft and lines are broadened; Suzaku spectra
confirm the lack of emission above 2 keV. Nor do the relative line shifts and
widths suggest any wind decoupling by ions. The He-like triplets indicate that
the bulk of the X-ray emission is formed rather close to the star, within 5
stellar radii. Our results challenge the idea that some OB stars are
``weak-wind'' stars that deviate from the standard wind-luminosity
relationship. The wind is not weak, but it is hot and its bulk is only
detectable in X-rays.Comment: Accepted for publication in ApJ Letter
A new type of X-ray pulsar
X-ray emission from stars much more massive than the Sun was discovered only
35 years ago. Such stars drive fast stellar winds where shocks can develop, and
it is commonly assumed that the X-rays emerge from the shock-heated plasma.
Many massive stars additionally pulsate. However, hitherto it was neither
theoretically predicted nor observed that these pulsations would affect their
X-ray emission. Here we report the discovery of pulsating X-rays from the
massive B-type star Xi1 Canis Majoris. This star is a variable of beta Cephei
type and has a strong magnetic field. Our observations with the XMM-Newton
telescope reveal X-ray pulsations with the same period as the fundamental
stellar pulsation. This discovery challenges our understanding of stellar winds
from massive stars, their X-ray emission, and their magnetism.Comment: manuscript draft. The revised paper is published in Nature
Communication
On X-ray pulsations in beta Cephei-type variables
Beta Cephei-type variables are early B-type stars that are characterized by
oscillations observable in their optical light curves. At least one Beta
Cep-variable also shows periodic variability in X-rays. Here we study the X-ray
light curves in a sample of beta Cep-variables to investigate how common X-ray
pulsations are for this type of stars. We searched the Chandra and XMM-Newton
X-ray archives and selected stars that were observed by these telescopes for at
least three optical pulsational periods. We retrieved and analyzed the X-ray
data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these
objects were studied to test for their variability and periodicity. While there
is a weak indication for X-ray variability in beta Cru, we find no
statistically significant evidence of X-ray pulsations in any of our sample
stars. This might be due either to the insufficient data quality or to the
physical lack of modulations. New, more sensitive observations should settle
this question.Comment: accepted in A&
The rapid evolution of the exciting star of the Stingray Nebula
SAO244567, the exciting star of the Stingray nebula, is rapidly evolving.
Previous analyses suggested that it has heated up from an effective temperature
of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic
giant branch evolution suggests a relatively high mass while previous analyses
indicate a low-mass star. Fitting line profiles from static and expanding
non-LTE model atmospheres to the observed UV and optical spectra, taken during
1988-2013, allowed us to study the temporal change of effective temperature,
surface gravity, mass-loss rate, and terminal wind velocity. In addition, we
determined the chemical composition of the atmosphere. We find that the central
star has steadily increased its effective temperature from 38kK in 1988 to a
peak value of 60kK in 2002. During the same time, the star was contracting, as
concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a
drop in luminosity. Simultaneously, the mass-loss rate declined from log
(dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from
1800km/s to 2800km/s. Since around 2002, the star stopped heating and has
cooled down again to 55kK by 2006. It has a largely solar surface composition
with the exception of slightly subsolar carbon, phosphorus, and sulfur. By
comparison with stellar-evolution calculations, we confirm that SAO244567 must
be a low-mass star (M < 0.55 Msun). However, the slow evolution of the
respective stellar evolutionary models is in strong contrast to the observed
fast evolution and the young planetary nebula with a kinematical age of only
about 1000 years. We speculate that the star could be a late He-shell flash
object. Alternatively, it could be the outcome of close-binary evolution. Then
SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the
common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&
Coupling hydrodynamics with comoving frame radiative transfer: II. Stellar wind stratification in the high-mass X-ray binary Vela X-1
CONTEXT: Vela X-1, a prototypical high mass X-ray binary (HMXB), hosts a
neutron star (NS) in a close orbit around an early-B supergiant donor star.
Accretion of the donor star's wind onto the NS powers its strong X-ray
luminosity. To understand the physics of HMXBs, detailed knowledge about the
donor star winds is required. AIMS: To gain a realistic picture of the donor
star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model
describing the wind stratification while properly reproducing the observed
donor spectrum. To investigate how X-ray illumination affects the stellar wind,
we calculated additional models for different X-ray luminosity regimes.
METHODS: We use the recently updated version of the PoWR code to consistently
solve the hydrodynamic equation together with the statistical equations and the
radiative transfer. RESULTS: The wind flow in Vela X-1 is driven by ions from
various elements with Fe III and S III leading in the outer wind. The
model-predicted mass-loss rate is in line with earlier empirical studies. The
mass-loss rate is almost unaffected by the presence of the accreting NS in the
wind. The terminal wind velocity is confirmed at km/s.
On the other hand, the wind velocity in the inner region where the NS is
located is only km/s, which is not expected on the basis of a
standard -velocity law. In models with an enhanced level of X-rays, the
velocity field in the outer wind can be altered. If the X-ray flux is too high,
the acceleration breaks down because the ionization increases. CONCLUSIONS:
Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model
reveals a low wind speed at the NS location, and it provides quantitative
information on wind driving in this important HMXB.Comment: 19 pages, 10 figures, accepted for publication in Astronomy &
Astrophysic
The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class
Aims: Following our comprehensive studies of the WR stars in the Milky Way,
we now present spectroscopic analyses of almost all known WN stars in the LMC.
Methods: For the quantitative analysis of the wind-dominated emission-line
spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By
fitting synthetic spectra to the observed spectral energy distribution and the
available spectra (ultraviolet and optical), we obtain the physical properties
of 107 stars. Results: We present the fundamental stellar and wind parameters
for an almost complete sample of WN stars in the LMC. Among those stars that
are putatively single, two different groups can be clearly distinguished. While
12% of our sample are more luminous than 10^6 Lsun and contain a significant
amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate
the luminosity range between log (L/Lsun) = 5.3...5.8. Conclusions: While the
few extremely luminous stars (log (L/Lsun) > 6), if indeed single stars,
descended directly from the main sequence at very high initial masses, the bulk
of WN stars have gone through the red-supergiant phase. According to their
luminosities in the range of log (L/Lsun) = 5.3...5.8, these stars originate
from initial masses between 20 and 40 Msun. This mass range is similar to the
one found in the Galaxy, i.e. the expected metallicity dependence of the
evolution is not seen. Current stellar evolution tracks, even when accounting
for rotationally induced mixing, still partly fail to reproduce the observed
ranges of luminosities and initial masses. Moreover, stellar radii are
generally larger and effective temperatures correspondingly lower than
predicted from stellar evolution models, probably due to subphotospheric
inflation.Comment: 17+46 pages; 10+54 figures; v2: typos corrected, space-saving layout
for appendix C, published in A&
- …