6 research outputs found

    The influence of extreme weather events on farm economic performance ā€“ a case study from Serbia

    Get PDF
    Western Balkan region, particularly Serbia, is faced with an increased frequency of extreme weather events, as a consequence of global climate change. However, there is still no enough research on how the effects of extreme weather events could be measured on the farm level. More importantly, there is no standard international methodology that is used regularly to address the issue. Therefore, the aim of this research was to evaluate the effects of extreme weather events on business performances of two the most common farm types in Serbia. To achieve this goal, the authors performed a financial loss assessment on a farm level. Panel models and R software environment were used to perform a multiple regression analysis allowing to indicate determinants of financial loss indicator depending on the farmā€™s production type. The results indicated that performance of both farm types is more influenced by drought than by floods. The regression analysis revealed that for both farm types financial stress is the most important independent variable

    Modulation of rat synaptosomal ATPases and acetylcholinesterase activities induced by chronic exposure to the static magnetic field

    No full text
    Purpose: It is considered that exposure to static magnetic fields (SMF) may have both detrimental and therapeutic effect, but the mechanism of SMF influence on the living organisms is not well understood. Since the adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) are involved in both physiological and pathological processes, the modulation of Na+/K+-ATPase, ecto-ATPases and AChE activities, as well as oxidative stress responses were followed in synaptosomes isolated from rats after chronic exposure toward differently oriented SMF. Material and methods: Wistar albino rats were randomly divided into three experimental groups (six animals per group): Up and Down group - exposed to upward and downward oriented SMF, respectively, and Control group. After 50 days, the rats were sacrificed, and synaptosomes were isolated from the whole rat brain and used for testing the enzyme activities and oxidative stress parameters. Results: Chronic exposure to 1 mT SMF significantly increased ATPases, AChE activities, and malondialdehyde (MDA) level in both exposed groups, compared to control values. The significant decrease in synaptosomal catalase activity (1.48 Ā± 0.17 U/mg protein) induced by exposure to the downward oriented field, compared to those obtained for Control group (2.60 Ā± 0.29 U/mg protein), and Up group (2.72 Ā± 0.21 U/mg protein). Conclusions: It could be concluded that chronic exposure to differently oriented SMF increases ATPases and AChE activities in rat synaptosomes. Since brain ATPases and AChE have important roles in the pathogenesis of several neurological diseases, SMF influence on the activity of these enzymes may have potential therapeutic importance. Ā© 2018, Copyright Ā© 2018 Taylor & Francis Group, LLC

    Homogeneous static magnetic field of different orientation induces biological changes in subacutely exposed mice

    No full text
    It has been shown that static magnetic field (SMF) of moderate intensity produces considerable impact on biological systems. SMF can be homogeneous or inhomogeneous. In many studies, inhomogeneous SMF was employed. Aware that inhomogeneous SMF could result in experimental variability, we investigated the influence of a vertical homogeneous SMF of different orientation. Male Swiss-Webster 9- to 10-week-old mice were subacutely exposed to upward- and downward-oriented SMF of 128 mT generated by a cyclotron for 1 h/day during a 5-day period. We found that SMF affected various organs and that these effects were, to some degree, dependent on SMF orientation. Both upward- and downward-oriented SMF caused a reduction in the amount of total white blood cells (WBC) and lymphocytes in serum, a decrease of granulocytes in the spleen, kidney inflammation, and an increase in the amount of high-density lipoprotein (HDL). In addition, upward-oriented SMF caused brain edema and increased spleen cellularity. In contrast, downward-oriented SMF induced liver inflammation and a decrease in the amount of serum granulocytes. These effects might represent a specific redistribution of pro-inflammatory cells in blood and among various organs. It appears that homogeneous SMF of 128 mT affected specific organs in the body, rather than simultaneously and equally influencing the entire body system
    corecore