414 research outputs found
Trends in Field Quality along the Production of the LHC Dipoles and Differences among Manufacturers
More than two thirds of the dipoles of the Large Hadron Collider have been manufactured and their magnetic field has been measured at room temperature. In this paper we make a review of the trends that have been observed during the production. In some cases, the trends were traced back to displacements of conductors with respect to the nominal lay-out. The analysis allows detecting the most critical zones in the superconducting coil as far as field quality is concerned. The second part of the paper makes the point of the observed differences in field quality between the three manufacturers. The analysis allows evaluating which multipoles are more affected, what magnitudes of displacements are necessary to explain these differences (the manufacturers all producing the same baseline), and what could be the origin of such differences
WISE: A Simulation of the LHC Optics including Magnet Geometrical Data
The beam dynamics in the LHC require a tight control of the field quality and geometry of its magnets. At the EPAC06 we presented the simulation tool WISE which generates magnetic field errors to be used as input to the MAD-X program. This paper describes the evolution in the WISE software since EPAC06. The allocation of magnets to lattice positions is completed, and therefore there is no more need for simulated allocations. Geometric axis measurements are now available for all cryostats. Furthermore, survey data is available to estimate the precision of the magnet installation (alignment). This paper discusses how the new data is used in connection with MAD-X simulations to give the most recent figures for beta-beating at injection (450 GeV) and collision energy (7 TeV)
Steering the Field Quality in the Production of the Main Quadrupoles of the Large Hadron Collider
The main issues concerning the field quality in the main quadrupoles of the Large Hadron Collider are presented. We show the trend plots for the focusing strength and multipoles at room temperature covering more than 2/3 of the production. We describe the correction of the coil layout to improve b6 at injection field level. A non-negligible fraction of the quadrupoles has been manufactured with collars featuring a magnetic permeability somewhat higher than the specified limits. We show plots for this anomaly. Field quality correlations to measurements in operational conditions are discussed. The dependence of field quality on cable manufacturer is analyse
Models and experimental results from the wide aperture Nb-Ti magnets for the LHC upgrade
MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality
requirements needed for the phase-1 LHC upgrade, now superseded by the high
luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at
room temperature and 1.9 K. The technology developed for this magnet is
relevant for other magnets currently under development for the high-luminosity
upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA).
In this paper we present MQXC test results, some of the specialized heat
extraction features, spot heaters, temperature sensor mounting and voltage tap
development for the special open cable insulation. We look at some problem
solving with noisy signals, give an overview of electrical testing, look at how
we calculate the coil resistance during at quench and show that the heaters are
not working We describe the quench signals and its timing, the development of
the quench heaters and give an explanation of an Excel quench calculation and
its comparison including the good agreement with the MQXC test results. We
propose an improvement to the magnet circuit design to reduce voltage to ground
values by factor 2. The program is then used to predict quench Hot-Spot and
Voltages values for the D1 dipole and the Q4 quadrupole.Comment: 8 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet,
Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva,
Switzerlan
Quality Control Techniques Applied to the Large Scale Production of Superconducting Dipole Magnets for LHC
The LHC accelerator, under construction at CERN, is characterized by the use on a large scale of high field superconducting dipoles: the 27-km ring requires 1232 15-m long dipole magnets designed for a peak field of 9 T. The coils are wound with Rutherford-type cable based on copper-stabilized Nb-Ti superconductors and will be operated at 1.9 K in pressurized superfluid helium. The challenge that had to be faced has been an efficient, cost-effective and reproducible mass production to very tight tolerances: the field quality must be better than 10-4 and the geometry of the cold bore tube and magnet controlled to 0.1 mm over the whole length, any deviation being liable to induce delays and significant cost increase. This paper presents the main methods and tools chosen to face successfully this challenge: some methods were foreseen in the technical specification, others were implemented based on the experience gained in several years of fabrication
Recommended from our members
Second-Generation Coil Design of the Nb3Sn low-β Quadrupole for the High Luminosity LHC
As part of the Large Hadron Collider (LHC) Luminosity upgrade program, the U.S.-LHC Accelerator Research Program collaboration and CERN are working together to design and build a 150-mm aperture Nb3Sn quadrupole for the LHC interaction regions. A first series of 1.5-m-long coils was fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a fine tune of the cable geometry and a field quality optimization, were implemented in a new second-generation coil design. In this paper, we review the main characteristics of the first generation coils, describe the modification in coil layout and discuss their impact on parts design and magnet analysis
APE Results of Hadron Masses in Full QCD Simulations
We present numerical results obtained in full QCD with 2 flavors of Wilson
fermions. We discuss the relation between the phase of Polyakov loops and the
{\bf sea} quarks boundary conditions. We report preliminary results about the
HMC autocorrelation of the hadronic masses, on a lattice
volume, at with .Comment: 3 pages, compressed ps-file (uufiles), Contribution to Lattice 9
Performance of the LHC Arc Superconducting Quadrupoles Towards the End of their Series Fabrication
The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the Nb-Ti/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited number of quadrupoles in order to verify the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine. The measures taken to overcome the problem of a too high permeability of a batch of collars are discussed
Quenched -parameter with the Wilson and Clover actions at
We present results for the Kaon parameter from a sample of
configurations using the Wilson action and configurations using the
Clover action, on a lattice at . A slight
improvement of the chiral behaviour of is observed due to the Clover
action. We have also compared the results for obtained from two different
procedures for the boosting of the coupling constant . We observe a strong
dependence of on the prescription adopted for in the Wilson case,
contrary to the results of the Clover case which are almost unaffected by the
choice of . Combining some recently obtained non perturbative estimates for
the renormalisation constants with our Clover matrix element, we observe a
significant improvement in the chiral behaviour of .Comment: 3 pages, Latex, Postscript file with figures available at
ftp://hpteo.roma1.infn.it/pub/preprints/lat94/donini ; to appear in Lattice
'94, Nucl. Phys. (Proc.Suppl.
- …