414 research outputs found

    Trends in Field Quality along the Production of the LHC Dipoles and Differences among Manufacturers

    Get PDF
    More than two thirds of the dipoles of the Large Hadron Collider have been manufactured and their magnetic field has been measured at room temperature. In this paper we make a review of the trends that have been observed during the production. In some cases, the trends were traced back to displacements of conductors with respect to the nominal lay-out. The analysis allows detecting the most critical zones in the superconducting coil as far as field quality is concerned. The second part of the paper makes the point of the observed differences in field quality between the three manufacturers. The analysis allows evaluating which multipoles are more affected, what magnitudes of displacements are necessary to explain these differences (the manufacturers all producing the same baseline), and what could be the origin of such differences

    WISE: A Simulation of the LHC Optics including Magnet Geometrical Data

    Get PDF
    The beam dynamics in the LHC require a tight control of the field quality and geometry of its magnets. At the EPAC06 we presented the simulation tool WISE which generates magnetic field errors to be used as input to the MAD-X program. This paper describes the evolution in the WISE software since EPAC06. The allocation of magnets to lattice positions is completed, and therefore there is no more need for simulated allocations. Geometric axis measurements are now available for all cryostats. Furthermore, survey data is available to estimate the precision of the magnet installation (alignment). This paper discusses how the new data is used in connection with MAD-X simulations to give the most recent figures for beta-beating at injection (450 GeV) and collision energy (7 TeV)

    Steering the Field Quality in the Production of the Main Quadrupoles of the Large Hadron Collider

    Get PDF
    The main issues concerning the field quality in the main quadrupoles of the Large Hadron Collider are presented. We show the trend plots for the focusing strength and multipoles at room temperature covering more than 2/3 of the production. We describe the correction of the coil layout to improve b6 at injection field level. A non-negligible fraction of the quadrupoles has been manufactured with collars featuring a magnetic permeability somewhat higher than the specified limits. We show plots for this anomaly. Field quality correlations to measurements in operational conditions are discussed. The dependence of field quality on cable manufacturer is analyse

    Models and experimental results from the wide aperture Nb-Ti magnets for the LHC upgrade

    Full text link
    MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality requirements needed for the phase-1 LHC upgrade, now superseded by the high luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at room temperature and 1.9 K. The technology developed for this magnet is relevant for other magnets currently under development for the high-luminosity upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA). In this paper we present MQXC test results, some of the specialized heat extraction features, spot heaters, temperature sensor mounting and voltage tap development for the special open cable insulation. We look at some problem solving with noisy signals, give an overview of electrical testing, look at how we calculate the coil resistance during at quench and show that the heaters are not working We describe the quench signals and its timing, the development of the quench heaters and give an explanation of an Excel quench calculation and its comparison including the good agreement with the MQXC test results. We propose an improvement to the magnet circuit design to reduce voltage to ground values by factor 2. The program is then used to predict quench Hot-Spot and Voltages values for the D1 dipole and the Q4 quadrupole.Comment: 8 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    Quality Control Techniques Applied to the Large Scale Production of Superconducting Dipole Magnets for LHC

    Get PDF
    The LHC accelerator, under construction at CERN, is characterized by the use on a large scale of high field superconducting dipoles: the 27-km ring requires 1232 15-m long dipole magnets designed for a peak field of 9 T. The coils are wound with Rutherford-type cable based on copper-stabilized Nb-Ti superconductors and will be operated at 1.9 K in pressurized superfluid helium. The challenge that had to be faced has been an efficient, cost-effective and reproducible mass production to very tight tolerances: the field quality must be better than 10-4 and the geometry of the cold bore tube and magnet controlled to 0.1 mm over the whole length, any deviation being liable to induce delays and significant cost increase. This paper presents the main methods and tools chosen to face successfully this challenge: some methods were foreseen in the technical specification, others were implemented based on the experience gained in several years of fabrication

    APE Results of Hadron Masses in Full QCD Simulations

    Get PDF
    We present numerical results obtained in full QCD with 2 flavors of Wilson fermions. We discuss the relation between the phase of Polyakov loops and the {\bf sea} quarks boundary conditions. We report preliminary results about the HMC autocorrelation of the hadronic masses, on a 163×3216^3 \times 32 lattice volume, at β=5.55\beta=5.55 with ksea=0.1570k_{sea}=0.1570.Comment: 3 pages, compressed ps-file (uufiles), Contribution to Lattice 9

    Performance of the LHC Arc Superconducting Quadrupoles Towards the End of their Series Fabrication

    Get PDF
    The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the Nb-Ti/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited number of quadrupoles in order to verify the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine. The measures taken to overcome the problem of a too high permeability of a batch of collars are discussed

    Quenched BKB_K-parameter with the Wilson and Clover actions at β=6.0\beta = 6.0

    Full text link
    We present results for the Kaon BB parameter from a sample of 200200 configurations using the Wilson action and 460460 configurations using the Clover action, on a 183×6418^3 \times 64 lattice at β=6.0\beta=6.0. A slight improvement of the chiral behaviour of BKB_K is observed due to the Clover action. We have also compared the results for BKB_K obtained from two different procedures for the boosting of the coupling constant gg. We observe a strong dependence of BKB_K on the prescription adopted for gg in the Wilson case, contrary to the results of the Clover case which are almost unaffected by the choice of gg. Combining some recently obtained non perturbative estimates for the renormalisation constants with our Clover matrix element, we observe a significant improvement in the chiral behaviour of BKB_K.Comment: 3 pages, Latex, Postscript file with figures available at ftp://hpteo.roma1.infn.it/pub/preprints/lat94/donini ; to appear in Lattice '94, Nucl. Phys. (Proc.Suppl.
    • …
    corecore