111 research outputs found

    An exploration of the effectiveness of artificial mini-magnetospheres as a potential solar storm shelter for long term human space missions

    Get PDF
    If mankind is to explore the solar system beyond the confines of our Earth and Moon the problem of radiation protection must be addressed. Galactic cosmic rays and highly variable energetic solar particles are an ever-present hazard in interplanetary space. Electric and/or magnetic fields have been suggested as deflection shields in the past, but these treated space as an empty vacuum. In fact it is not empty. Space contains a plasma known as the solar wind; a constant flow of protons and electrons coming from the Sun. In this paper we explore the effectiveness of a “mini-magnetosphere” acting as a radiation protection shield. We explicitly include the plasma physics necessary to account for the solar wind and its induced effects. We show that, by capturing/containing this plasma, we enhance the effectiveness of the shield. Further evidence to support our conclusions can be obtained from studying naturally occurring “mini-magnetospheres” on the Moon. These magnetic anomalies (related to “lunar swirls”) exhibit many of the effects seen in laboratory experiments and computer simulations. If shown to be feasible, this technology could become the gateway to manned exploration of interplanetary space

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    The influence of a helical field on a reverse field pinch

    No full text
    3.00SIGLELD:9091.9F(CLM-R--222). / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore