164 research outputs found

    A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow

    Get PDF
    In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques was to impose onto the simulation box irreversible transformations. This would bring the simulation to an end as soon as the minimum lattice space requirements were violated. In practical terms, this meant repeating the short simulations to improve statistics and extending the box dimensions to increase the total simulation time. Our method, similar to what has already been done for pure elongational flow, allows a cuboid box to deform in time following the streamlines of the mixed flow and, after a period of time determined by the elongational field, to be mapped back and recover its initial shape. No discontinuity in physical properties is present during the mapping and the simulation can, in this way, be extended indefinitely. We also show that the most general form of mixed flow, in which the angle between the expanding (or contracting) direction and the velocity gradient axis varies, can be cast in a so-called canonical form, in which the angle assumes values that are multiples of π (when a mixed flow exists), by an appropriate choice of the field parameters

    Nanoflow hydrodynamics

    Get PDF
    We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between the intrinsic rotational and translational degrees of freedom becomes important for nanoflows. The coupling is correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as an independent hydrodynamic degree of freedom

    Relativistic mean-field study of neutron-rich nuclei

    Get PDF
    A relativistic mean-field model is used to study the ground-state properties of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by present day phenomenology, are added to the model Lagrangian in order to modify the poorly known density dependence of the symmetry energy. These new terms soften the symmetry energy and reshape the theoretical neutron drip line without compromising the agreement with existing ground-state information. A strong correlation between the neutron radius of 208Pb and the binding energy of valence orbitals is found: the smaller the neutron radius of 208Pb, the weaker the binding energy of the last occupied neutron orbital. Thus, models with the softest symmetry energy are the first ones to drip neutrons. Further, in anticipation of the upcoming one-percent measurement of the neutron radius of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the neutron radius of 208Pb and neutron radii of elements of relevance to atomic parity-violating experiments is established.Comment: 14 pages, 5 figure

    Sensitivity of deexcitation energies of superdeformed secondary minima to the density dependence of symmetry energy with the relativistic mean-field theory

    Full text link
    The relationship between deexcitation energies of superdeformed secondary minima relative to ground states and the density dependence of the symmetry energy is investigated for heavy nuclei using the relativistic mean field (RMF) model. It is shown that the deexcitation energies of superdeformed secondary minima are sensitive to differences in the symmetry energy that are mimicked by the isoscalar-isovector coupling included in the model. With deliberate investigations on a few Hg isotopes that have data of deexcitation energies, we find that the description for the deexcitation energies can be improved due to the softening of the symmetry energy. Further, we have investigated deexcitation energies of odd-odd heavy nuclei that are nearly independent of pairing correlations, and have discussed the possible extraction of the constraint on the density dependence of the symmetry energy with the measurement of deexcitation energies of these nuclei.Comment: 14 pages, 3 figure

    Aedes species (Diptera: Culicidae) ecological and host feeding patterns in the north-eastern parts of South Africa, 2014–2018

    Get PDF
    BACKGROUND: There is a paucity of recent data and knowledge on mosquito diversity and potential vectors of arboviruses in South Africa, with most of the available data dating back to the 1950s–1970s. Aedes and Culex species are the major vectors of some of the principal arboviruses which have emerged and re-emerged in the past few decades. METHODS: In this study we used entomological surveillance in selected areas in the north-eastern parts of South Africa from 2014 to 2018 to assess mosquito diversity, with special emphasis on the Aedes species. The impact of trap types and environmental conditions was also investigated. Identifcation of the blood meal sources of engorged females collected during the study period was carried out, and DNA barcodes were generated for selected species. RESULTS: Overall, 18.5% of the total Culicidae mosquitoes collected belonged to the genus Aedes, with 14 species recognised or suspected vectors of arboviruses. Species belonging to the Neomelaniconion subgenus were commonly collected in the Bushveld savanna at conservation areas, especially Aedes mcintoshi and Aedes circumluteolus. Aedes aegypti was present in all sites, albeit in low numbers. Temperature was a limiting factor for the Aedes population, and they were almost exclusively collected at temperatures between 18 °C and 27 °C. The cytochrome oxidase subunit I (COI) barcode fragment was amplifed for 21 Aedes species, and for nine of these species it was the frst sequence information uploaded on GenBank. CONCLUSION: This study provides a better understanding of the diversity and relative abundance of Aedes species in the north-east of South Africa. The information provided here will contribute to future arboviral research and implementation of efcient vector control and prevention strategies.The Centers for Disease Control and Preventionhttp://www.parasitesandvectors.compm2022Medical VirologyUP Centre for Sustainable Malaria Control (UP CSMC

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore