1,744 research outputs found
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn
Background:
Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents.
Results:
We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin.
Conclusions:
These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia
Copper(ii) complexes of N-propargyl cyclam ligands reveal a range of coordination modes and colours, and unexpected reactivity
The coordination chemistry of N-functionalised cyclam ligands has a rich history, yet cyclam derivatives with pendant alkynes are largely unexplored. This is despite the significant potential and burgeoning application of N-propargyl cyclams and related compounds in the creation of diversely functionalised cyclam derivatives via copper-catalysed azide–alkyne ‘click’ reactions. Herein we describe single crystal X-ray diffraction and spectroscopic investigations of the coordination chemistry of copper(II) complexes of cyclam derivatives with between 1 and 4 pendant alkynes. The crystal structures of these copper complexes unexpectedly reveal a range of coordination modes, and the surprising occurrence of five unique complexes within a single recrystallisation of the tetra-N-propargyl cyclam ligand. One of these species exhibits weak intramolecular copper-alkyne coordination, and another is formed by a surprising intramolecular copper-mediated hydroalkoxylation reaction with the solvent methanol, transforming one of the pendant alkynes to an enol ether. Multiple functionalisation of the tetra-N-propargyl ligand is demonstrated via a ‘tetra-click’ reaction with benzyl azide, and the copper-binding behaviour of the resulting tetra-triazole ligand is characterised spectroscopically
A direct method for the N-tetraalkylation of azamacrocycles
An efficient protocol for the direct synthesis of N-tetraalkylated derivatives of the azamacrocycles cyclam and cyclen has been developed, using a partially miscible aqueous-organic solvent system with propargyl bromide, benzyl bromide, and related halides. The method works most effectively when the reaction mixture is shaken, not stirred. A crystal structure of the N-tetrapropargyl cyclam derivative 1,4,8,11-tetra(prop-2-yn-1-yl)-1,4,8,11-tetraazacyclotetradecane diperchlorate is reported
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Statistical effects in X-ray diffraction lattice strain measurements of ferritic steel using crystal plasticity
The influence of statistics on calculated lattice strains has been studied by comparing crystal plasticity finite element (CPFE) calculations with strains measured experimentally. Experimentally, when Bragg's law is obeyed, a plane normal must lie within a narrow orientation range (∼ 0.02° for synchrotron diffraction), or Bragg tolerance. However, CPFE models consider only a small number of grains compared to experiments, necessitating a justification of the statistically representative volume. It also becomes necessary to assess the threshold of Bragg tolerance allowable for the determined statistically representative volume. In this study, an 8 × 8 × 8 model was deemed as statistically representative such that only small benefits are obtained in terms of lattice strain calculations by adopting larger models such as 10 × 10 × 10. Based on the selected model, an allowable Bragg tolerance of approximately 5° was calculated. Also highlighted was the coupling between lattice strain, texture, hardening and applied boundary condition which are discriminators that will affect the choice of model size and Bragg tolerance threshold
Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather
Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles
Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn
Background
The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons.
Results
PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II.
Conclusions
These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations
Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord
Background: Inhibitory interneurons constitute 30-40% of neurons in laminae I-III and have an important anti-nociceptive role. However, because of the difficulty in classifying them we know little about their organisation. Previous studies have identified 3 non-overlapping groups of inhibitory interneuron, which contain neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin, and have shown that these differ in postsynaptic targets. Some inhibitory interneurons contain galanin and the first aim of this study was to determine whether these form a different population from those containing NPY, nNOS or parvalbumin. We also estimated the proportion of neurons and GABAergic axons that contain galanin in laminae I-III. Results: Galanin cells were concentrated in laminae I-IIo, with few in laminae IIi-III. Galanin showed minimal co-localisation with NPY, nNOS or parvalbumin in laminae I-II, but most galanin-containing cells in lamina III were nNOS-positive. Galanin cells constituted similar to 7%, 3% and 2% of all neurons in laminae I, II and III, and we estimate that this corresponds to 26%, 10% and 5% of the GABAergic neurons in these laminae. However, galanin was only found in similar to 6% of GABAergic boutons in laminae I-IIo, and similar to 1% of those in laminae IIi-III. Conclusions: These results show that galanin, NPY, nNOS and parvalbumin can be used to define four distinct neurochemical populations of inhibitory interneurons. Together with results of a recent study, they suggest that the galanin and NPY populations account for around half of the inhibitory interneurons in lamina I and a quarter of those in lamina I
Open Educational Resources in Kentucky
Open educational resources (OER) play an increasingly important role in the education landscape, with increased awareness and use year over year (Coffey). Often, academic libraries play a supporting role for instructors as they locate, adopt, and create OER for their courses. In this article, we will provide an introduction to OER, outline some current trends in open education, and describe a few of the OER initiatives currently underway in Kentucky’s college and university libraries
- …