62 research outputs found

    Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees

    Get PDF
    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.U.S. Military HIV Research ProgramCollaboration for AIDS Vaccine Discover (OPP1032817)National Institutes of Health (U.S.) (3R01AI080289-02S1)National Institutes of Health (U.S.) (5R01AI080289-03)United States. Army Medical Research and Materiel Command (National Institute of Allergy and Infectious Diseases (U.S.) Interagency Agreement Y1-AI-2642-12)Henry M. Jackson Foundation for the Advancement of Military Medicine (U.S.) (United States. Dept. of Defense Cooperative Agreement W81XWH-07-2-0067

    Polyfunctional Hiv-Specific Antibody Responses Are Associated with Spontaneous Hiv Control

    Get PDF
    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure

    Lack of Protection following Passive Transfer of Polyclonal Highly Functional Low-Dose Non-Neutralizing Antibodies

    Get PDF
    Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC), are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC), we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP) were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments

    Design, expression, and processing of epitomized hepatitis C virus-encoded CTL epitopes

    No full text
    Hepatitis C virus (HCV) vaccine efficacy may crucially depend on immunogen length and coverage of viral sequence diversity. However, covering a considerable proportion of the circulating viral sequence variants would likely require long immunogens, which for the conserved portions of the viral genome, would contain unnecessarily redundant sequence information. In this study, we present the design and in vitro performance analysis of a novel "epitome" approach that compresses frequent immune targets of the cellular immune response against HCV into a shorter immunogen sequence. Compression of immunological information is achieved by partial overlapping shared sequence motifs between individual epitopes. At the same time, sequence diversity coverage is provided by taking advantage of emerging cross-reactivity patterns among epitope variants so that epitope variants associated with the broadest variant cross-recognition are preferentially included. The processing and presentation analysis of specific epitopes included in such a compressed, in vitro-expressed HCV epitome indicated effective processing of a majority of tested epitopes, although re-presentation of some epitopes may require refined sequence design. Together, the present study establishes the epitome approach as a potential powerful tool for vaccine immunogen design, especially suitable for the induction of cellular immune responses against highly variable pathogens

    A high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activation

    No full text
    The complement system plays a critical role in innate immune defense against pathogens, both via non-specific direct pathogen recognition and killing or via antigen-specific indirect recruitment by complement fixing antibodies. While various assays for measuring complement activation have been developed, few provide a high-throughput, sample-sparing approach to interrogate the qualitative differences in the ability of antibodies to drive complement activation. Here we present a high-throughput, sample-sparing, bead-based assay to evaluate antigen-specific antibody-dependent complement activation against nearly any antigen. Optimization of buffer composition, kinetics of immune complex formation, as well as complement source all contribute critically to the development of a robust, highly flexible and high-throughput approach to analyze antibody-dependent complement deposition (ADCD). Thus, the optimized bead-based, antigen-specific assay represents a simple, highly adaptable platform to profile antibody-dependent complement activation across pathogens and diseases
    • 

    corecore