1,754 research outputs found

    Antarctic Meteorite Classification and Petrographic Database

    Get PDF
    The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970's as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameter

    Improving the Acquisition and Management of Sample Curation Data

    Get PDF
    This paper discusses the current sample documentation processes used during and after a mission, examines the challenges and special considerations needed for designing effective sample curation data systems, and looks at the results of a simulated sample result mission and the lessons learned from this simulation. In addition, it introduces a new data architecture for an integrated sample Curation data system being implemented at the NASA Astromaterials Acquisition and Curation department and discusses how it improves on existing data management systems

    Integration of Apollo Lunar Sample Data into Google Moon

    Get PDF
    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon

    Astromaterials Curation Online Resources for Principal Investigators

    Get PDF
    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center curates all of NASA's extraterrestrial samples, the most extensive set of astromaterials samples available to the research community worldwide. The office allocates ~1500 individual samples to researchers and students each year and has served the planetary research community for 45+ years. The Astromaterials Curation office provides access to its sample data repository and digital resources to support the research needs of sample investigators and to aid in the selection and request of samples for scientific study. These resources can be found on the Astromaterials Acquisition and Curation website at https://curator.jsc.nasa.gov. To better serve our users, we have engaged in several activities to enhance the data available for astromaterials samples, to improve the accessibility and performance of the website, and to address user feedback. We havealso put plans in place for continuing improvements to our existing data products

    Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    Get PDF
    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon sample

    Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    Get PDF
    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facilit

    The Apollo Lunar Sample Image Collection: Digital Archiving and Online Access

    Get PDF
    The primary goal of the Apollo Program was to land human beings on the Moon and bring them safely back to Earth. This goal was achieved during six missions - Apollo 11, 12, 14, 15, 16, and 17 - that took place between 1969 and 1972. Among the many noteworthy engineering and scientific accomplishments of these missions, perhaps the most important in terms of scientific impact was the return of 382 kg (842 lb.) of lunar rocks, core samples, pebbles, sand, and dust from the lunar surface to Earth. Returned samples were curated at JSC (then known as the Manned Spacecraft Center) and, as part of the original processing, high-quality photographs were taken of each sample. The top, bottom, and sides of each rock sample were photographed, along with 16 stereo image pairs taken at 45-degree intervals. Photographs were also taken whenever a sample was subdivided and when thin sections were made. This collection of lunar sample images consists of roughly 36,000 photographs; all six Apollo missions are represented

    A substrate-induced gating mechanism is conserved among Gram-positive IgA1 metalloproteases

    Get PDF
    The mucosal adaptive immune response is dependent on the production of IgA antibodies and particularly IgA1, yet opportunistic bacteria have evolved mechanisms to specifically block this response by producing IgA1 proteases (IgA1Ps). Our lab was the first to describe the structures of a metal-dependent IgA1P (metallo-IgA1P) produced from Gram-positive Streptococcus pneumoniae both in the absence and presence of its IgA1 substrate through cryo-EM single particle reconstructions. This prior study revealed an active-site gating mechanism reliant on substrate-induced conformational changes to the enzyme that begged the question of whether such a mechanism is conserved among the wider Gram-positive metallo-IgA1P subfamily of virulence factors. Here, we used cryo-EM to characterize the metallo-IgA1P of a more distantly related family member from Gemella haemolysans, an emerging opportunistic pathogen implicated in meningitis, endocarditis, and more recently bacteremia in the elderly. While the substrate-free structures of these two metallo-IgA1Ps exhibit differences in the relative starting positions of the domain responsible for gating substrate, the enzymes have similar domain orientations when bound to IgA1. Together with biochemical studies that indicate these metallo-IgA1Ps have similar binding affinities and activities, these data indicate that metallo-IgA1P binding requires the specific IgA1 substrate to open the enzymes for access to their active site and thus, largely conform to an "induced fit" model.We thank the CU Cryo-EM Structural Biology Shared Resource Facility for screening. Data collection for single particular reconstructions were collected at the Pacific Northwester Cryo-EM Center (PNCC) at Oregon Health and Science University (OHSU), supported by NIH grant U24GM129547 and accessed through EMSL (grid.436923.9), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. H.Z. was supported by NIH R01 GM126626. E.Z.E. was supported by NIH R21 AI146295 and R01 GM139892.S

    Variations in Hip Shape Are Associated with Radiographic Knee Osteoarthritis : Cross-sectional and Longitudinal Analyses of the Johnston County Osteoarthritis Project

    Get PDF
    Acknowledgment We thank our funding sources, as well as the staff and participants in the Johnston County Osteoarthritis Project, without whom this work would not be possible. Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).Peer reviewedPostprin
    corecore