173 research outputs found

    The Pathway to Detangle a Scrambled Gene

    Get PDF
    Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20-30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development.To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways.This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules

    Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD.</p> <p>Methods</p> <p>Case-control association study was performed with seven SNPs from the <it>IL10 </it>gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited.</p> <p>Results</p> <p>None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the <it>IL10 </it>gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (<it>IL20 </it>and <it>IL24 </it>genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097).</p> <p>Conclusion</p> <p>Our study established increased risk for MDD related to the <it>IL20 </it>and <it>IL24 </it>haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation.</p

    Common Variants of the Liver Fatty Acid Binding Protein Gene Influence the Risk of Type 2 Diabetes and Insulin Resistance in Spanish Population

    Get PDF
    SummaryThe main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated.Methods1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes). DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model.ResultsOne polymorphism (rs2197076) and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population.ConclusionsThe study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians

    Rapid Processing of Both Reward Probability and Reward Uncertainty in the Human Anterior Cingulate Cortex

    Get PDF
    Reward probability and uncertainty are two fundamental parameters of decision making. Whereas reward probability indicates the prospect of winning, reward uncertainty, measured as the variance of probability, indicates the degree of risk. Several lines of evidence have suggested that the anterior cingulate cortex (ACC) plays an important role in reward processing. What is lacking is a quantitative analysis of the encoding of reward probability and uncertainty in the human ACC. In this study, we addressed this issue by analyzing the feedback-related negativity (FRN), an event-related potential (ERP) component that reflects the ACC activity, in a simple gambling task in which reward probability and uncertainty were parametrically manipulated through predicting cues. Results showed that at the outcome evaluation phase, while both win and loss-related FRN amplitudes increased as the probability of win or loss decreased, only the win-related FRN was modulated by reward uncertainty. This study demonstrates the rapid encoding of reward probability and uncertainty in the human ACC and offers new insights into the functions of the ACC

    Tumor Cell Plasticity and Angiogenesis in Human Melanomas

    Get PDF
    Recent molecular studies provide evidence for a significant transcriptional plasticity of tumor cell subpopulations that facilitate an active contribution to tumor vasculature. This feature is accompanied by morphological changes both in vitro and in vivo. Herein, we investigated the morphological plasticity of tumor cells with special focus on vasculogenic mimicry and neovascularisation in human melanoma and mouse xenografts of human melanoma cell lines. In melanoma xenograft experiments, different vessel markers and green fluorescent protein expression were used to show how melanoma cells contribute to neovascularization. Additionally, we analyzed neovascularization in 49 primary melanomas and 175 melanoma metastases using immunostaining for blood (CD34) and lymphatic (D2–40) vessel-specific markers. We found significantly more lymphatic vessels in primary melanomas than in melanoma metastases (p<0.0001). In contrast to the near absence of lymphatic vessels within metastases, we found extensive blood micro-neovascularization. Blood micro-neovascularization was absent in micro metastases (less than 2 mm). A significant inverse correlation between Glut-1 expression (implying local hypoxia) and the presence of microvessels indicates their functional activity as blood vessels (p<0.0001). We suggest that the hypoxic microenvironment in metastases contributes to a phenotype switch allowing melanoma cells to physically contribute to blood vessel formation

    Acute Effects of Nicotine Amplify Accumbal Neural Responses during Nicotine-Taking Behavior and Nicotine-Paired Environmental Cues

    Get PDF
    Nicotine self-administration (SA) is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc) is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg) paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively). Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1) excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2) a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA

    Abnormal reward prediction-error signalling in antipsychotic naive individuals with first-episode psychosis or clinical risk for psychosis.

    Get PDF
    Ongoing research suggests preliminary, though not entirely consistent, evidence of neural abnormalities in signalling prediction errors in schizophrenia. Supporting theories suggest mechanistic links between the disruption of these processes and the generation of psychotic symptoms. However, it is unknown at what stage in the pathogenesis of psychosis these impairments in prediction-error signalling develop. One major confound in prior studies is the use of medicated patients with strongly varying disease durations. Our study aims to investigate the involvement of the meso-cortico-striatal circuitry during reward prediction-error signalling in earliest stages of psychosis. We studied patients with first-episode psychosis (FEP) and help-seeking individuals at-risk for psychosis due to sub-threshold prodromal psychotic symptoms. Patients with either FEP (n = 14), or at-risk for developing psychosis (n = 30), and healthy volunteers (n = 39) performed a reinforcement learning task during fMRI scanning. ANOVA revealed significant (p < 0.05 family-wise error corrected) prediction-error signalling differences between groups in the dopaminergic midbrain and right middle frontal gyrus (dorsolateral prefrontal cortex, DLPFC). FEP patients showed disrupted reward prediction-error signalling compared to controls in both regions. At-risk patients showed intermediate activation in the midbrain that significantly differed from controls and from FEP patients, but DLPFC activation that did not differ from controls. Our study confirms that FEP patients have abnormal meso-cortical signalling of reward-prediction errors, whereas reward-prediction-error dysfunction in the at-risk patients appears to show a more nuanced pattern of activation with a degree of midbrain impairment but preserved cortical function

    Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement

    Get PDF
    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a “reward prediction error” (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function

    Your Resting Brain CAREs about Your Risky Behavior

    Get PDF
    Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.We employed resting state functional magnetic resonance imaging (R-fMRI) and resting state functional connectivity (RSFC) methods to investigate differences in the brain's intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate). We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion) was associated with 1) stronger positive functional connectivity between right inferior frontal gyrus (IFG) and right insula, and 2) weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that individual differences in attitudes toward risk-taking are reflected in the brain's functional architecture and may have implications for engaging in real-world risky behaviors

    Effects of perceived cocaine availability on subjective and objective responses to the drug

    Get PDF
    <p>Abstract</p> <p>Rationale</p> <p>Several lines of evidence suggest that cocaine expectancy and craving are two related phenomena. The present study assessed this potential link by contrasting reactions to varying degrees of the drug's perceived availability.</p> <p>Method</p> <p>Non-treatment seeking individuals with cocaine dependence were administered an intravenous bolus of cocaine (0.2 mg/kg) under 100% ('unblinded'; N = 33) and 33% ('blinded'; N = 12) probability conditions for the delivery of drug. Subjective ratings of craving, high, rush and low along with heart rate and blood pressure measurements were collected at baseline and every minute for 20 minutes following the infusions.</p> <p>Results</p> <p>Compared to the 'blinded' subjects, their 'unblinded' counterparts had similar craving scores on a multidimensional assessment several hours before the infusion, but reported higher craving levels on a more proximal evaluation, immediately prior to the receipt of cocaine. Furthermore, the 'unblinded' subjects displayed a more rapid onset of high and rush cocaine responses along with significantly higher cocaine-induced heart rate elevations.</p> <p>Conclusion</p> <p>These results support the hypothesis that cocaine expectancy modulates subjective and objective responses to the drug. Provided the important public health policy implications of heavy cocaine use, health policy makers and clinicians alike may favor cocaine craving assessments performed in the settings with access to the drug rather than in more neutral environments as a more meaningful marker of disease staging and assignment to the proper level of care.</p
    corecore