7,954 research outputs found

    Space shuttle orbit maneuvering engine reusable thrust chamber. Task 13: Subscale helium ingestion and two dimensional heating test report

    Get PDF
    Descriptions are given of the test hardware, facility, procedures, and results of electrically heated tube, channel and panel tests conducted to determine effects of helium ingestion, two dimensional conduction, and plugged coolant channels on operating limits of convectively cooled chambers typical of space shuttle orbit maneuvering engine designs. Helium ingestion in froth form, was studied in tubular and rectangular single channel test sections. Plugged channel simulation was investigated in a three channel panel. Burn-out limits (transition of film boiling) were studied in both single channel and panel test sections to determine 2-D conduction effects as compared to tubular test results

    Regenerative cooling design and analysis computer program

    Get PDF
    Program evaluates influences of heat transfer, stress, and cycle life. Coolant passages may be tubes or channels, with or without gas-side wall coating. Program options include two-dimensional thermal analysis model of tube or channel cross-section using relaxation technique with variable number of nodes

    Task 12 data dump (phase 2) OME integrated thrust chamber test report

    Get PDF
    The characteristics and performance of the orbit maneuvering engine for the space shuttle are discussed. Emphasis is placed on the regeneratively cooled thrust chamber of the engine. Tests were conducted to determine engine operating parameters during the start, shutdown, and restart. Characteristics of the integrated thrust chamber and the performance and thermal conditions for blowdown operation without supplementary boundary layer cooling were investigated. The results of the test program are presented

    Tank 12 data dump OME integrated thrust chamber test report, phase 1

    Get PDF
    The test program conducted to characterize the steady state stability, thermal, and performance characteristics of the integrated thrust chamber assembly, as well as limited tests to investigate transient characteristics are described

    Space shuttle orbit maneuvering engine reusable thrust chamber program

    Get PDF
    Analyses and preliminary designs of candidate OME propellant combinations and corresponding engine designs were conducted and evaluated in terms of performance, operating limits, program cost, risk, inherent life and maintainability. For the Rocketdyne recommended and NASA approved propellant combination and cooling concept (NTO/MMH regeneratively cooled engine), a demonstration thrust chamber was designed, fabricated, and experimentally evaluated to define operating characteristics and limits. Alternate fuel (50-50) operating characteristics were also investigated with the demonstration chamber. Adverse operating effects on regenerative cooled operation were evaluated using subscale electrically heated tubes and channels. An investigation of like doublet element characteristics using subscale tests was performed. Full scale 8- and 10-inch diameter like-doublet injectors for the OME were designed, fabricated, and tested. Injector stability was evaluated analytically and experimentally

    Space shuttle orbit maneuvering engine reusable thrust chamber program

    Get PDF
    Tests were conducted on the regenerative cooled thrust chamber of the space shuttle orbit maneuvering engine. The conditions for the tests and the durations obtained are presented. The tests demonstrated thrust chamber operation over the nominal ranges of chamber pressure mixture ratio. Variations in auxiliary film coolant flowrate were also demonstrated. High pressure tests were conducted to demonstrate the thrust chamber operation at conditions approaching the design chamber pressure for the derivative space tug application

    Space shuttle orbit maneuvering engine reusable thrust chamber: Adverse operating conditions test report

    Get PDF
    Test hardware, facilities, and procedures are described along with results of electrically heated tube and channel tests conducted to determine adverse operating condition limits for convectively cooled chambers typical of Space Shuttle Orbit Manuevering Engine designs. Hot-start tests were conducted with corrosion resistant steel and nickel tubes with both monomethylhydrazine and 50-50 coolants. Helium ingestion, in both bubble and froth form, was studied in tubular test sections. Helium bubble ingestion and burn-out limits in rectangular channels were also investigated

    Space shuttle orbit maneuvering engine reusable thrust chamber. Task 10: Data dump comparison of 8- and 10- inch diameter thrust chambers

    Get PDF
    An analytical and design study was conducted to compare the high and low contraction ratio thrust chambers for regenratively cooled orbit maneuvering engines for the space shuttle was conducted. The design concepts were evaluated on the basis of weight, pressure drop, and performance. Only the basic thrust chamber assembly was considered. The assembly consists of the injector, the regeneratively cooled thrust chamber, and the radiation cooled nozzle. A two dimensional thermal analysis of the channel section is provided

    Probing 5f-state configurations in URu2Si2 with U L3-edge resonant x-ray emission spectroscopy

    Full text link
    Resonant x-ray emission spectroscopy (RXES) was employed at the U L3 absorption edge and the La1 emission line to explore the 5f occupancy, nf, and the degree of 5f orbital delocalization in the hidden order compound URu2Si2. By comparing to suitable reference materials such as UF4, UCd11, and alpha-U, we conclude that the 5f orbital in URu2Si2 is at least partially delocalized with nf = 2.87 +/- 0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring a localized f2 ground state.Comment: 11 pages,7 figure

    A Flattened Protostellar Envelope in Absorption around L1157

    Full text link
    Deep Spitzer IRAC images of L1157 reveal many of the details of the outflow and the circumstellar environment of this Class 0 protostar. In IRAC band 4, 8 microns, there is a flattened structure seen in absorption against the background emission. The structure is perpendicular to the outflow and is extended to a diameter of 2 arcminutes. This structure is the first clear detection of a flattened circumstellar envelope or pseudo-disk around a Class 0 protostar. Such a flattened morphology is an expected outcome for many collapse theories that include magnetic fields or rotation. We construct an extinction model for a power-law density profile, but we do not constrain the density power-law index.Comment: ApJL accepte
    • …
    corecore