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INTRODUCTION

The point design SSOME Regeneratively Cooled Orbit Maneuvering Engine
described by Rocketdyne in the Task I, II Data Dump includes a regenera-
tively cooled thrust chamber having a contraction ratio of 2 and an
injector-to-throat distance of 14.7 inches. The chamber has a diameter

of 8.2 inches at the injector end and was designed with constant width
channels from the injector through the throat region into the diverging
section where a step change in the channel width was made to reduce the
weight of the chamber. Since that Data Dump was prepared, potential
advantages in performance, stability, and heat transfer characteristics
have been indicafed for a chamber having a contraction ratio 3 instead

of 2. Also, significant weight advantages have been shown for fabrication
of a chamber using constant land thicknesses instead of constant channel
widths. Finally, experimental heat flux profiles became available for
both chambers. The purpose of this analytical and design study was to com-
pare the high and low contraction ratio thrust chambers and the two channel
design concepts on the basis of weight, pressure drop, and performance.
Only the basic thrust chamber assembly was considered in this analysis.
The assembly consists of the injector, the regeneratively cooled thrust
chamber, and the radiation cooled nozzle. Engine design factors from the
'Rocketdyne Data Dump, ASR 72-238, and vehicle trade factors furnished by
NASA were used in the study.
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SUMMARY

Three chamber'configufations were analyzed: 1) an 8-inch diameter

(EC = 2) chamber having constant width channels; 2) an 8-inch diameter
chamber having constant width lands; and 3} a 10-inch diameter chamber
(€_ = 3) having constant-width lands.

c
drops, and nozzle performance were calculated for each configuration

Component weights, pressure
using experimental heat transfer data. OMS trade factors were used
to convert the weights and pressure drops to equivalent specific

impulse values for: 1) constant OMS inert weight, and 2) constant OMS

wet (tanked) weight.

The resulting weights, pressure drops, and performance values summarized
below indicate the superiority of the constant width land over the
constant width channel configuration. The 8-inch diameter chamber
provides a significant equivalent performance gain relative to the
10-inch chamber based on constant OMS inert weight but a slight perform-

ance loss based on wet weight.

' AEquiv. Ig,
€ AWeight, |AlInlet Press., [ ANozzle I, Sec
‘Configuration Lb PSIA Sec Inert Wet
Constant Channel Nominal Nominal Nominal Nominal
Constant Land -6.5 -3.6 0 7.0 0.3
Constant Land 6.6 -3.8 0.9 3.8 1.0
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DISCUSSION

The initial Rocketdyne regeneratively cooled OME design was perturbed
to determine the effects of changing the‘design contraction ratio and
the fabrication technique with respect to channel cutting. Three
chamber configurations were investigated: 1) contraction ratio of 2
and constant channel width; 2) contraction ratio of 2 and constant

land width; 3) contraction ratio of 3 and constant land width.
BASIC ENGINE DESIGN AND GROUND RULES

The Rocketdyne regeneratively cooled OME design is shown in Fig. 1. The
engine includes the regeneratively cooled chamber, radiation nozzle,
injector,propellant valves, gimbal ring and gimbal bearing attachments,
propellant ducting, electrical harness, and pneumatic package. A weight
‘breakdown of these components is shown in Table 1. Only the first three
items are included in the weight analysis. Changes in the contraction
-ratio and chamber length of the magnitude being considered would have

little if any effects on the weights. of the other components.

Ground rules for the study are summarized in Table 2. The heat flux pro-
files are based and experimental data taken with Rocketdyne (EQ:= 2) and
Bell Aerosystems (E;c = 3) chambers. Two-dimensional analyses were used
to calculate the temperature distribution for the chamber with constant-
width channels. The simpler, one-dimensional analyses were used for the
chambers having constant-width lands. The narrow (0.040 inch) width
chosen for the land results in lower wall temperature because the heat
flux is uniformly distributed. To verify this, one- and two-dimensional
analyses were made of chamber with €. = 2. The ope—dimensional'analysis
indicated a wall temperature of 389,5F in contact with the coolant. The
results of the'twb-dimensional analysis, shown in the schematic computer

printout of Fig. 2 , indicate essentially the same temperatures.



ALTIVAD d00d d0
ST OVd TVNIOIHO

= - e
\
5.820 Dia.
= |
77/ tad - _grwa
N 7 '»
o, " » | ‘

l ) —-.- L . / h £ = 7
njector / . .
Assembly Gimbal Ring Mount

Thrust Chamber Assembly, ' \

Regeneratively Coocled, . I‘eh‘h

Channel Wall Construction o

ELF Ni/Cres ' | i )
H-

Nozzle Extension -
Radiation Cooled

Figure 1. OME Thrust Chamber Assembly Flight Configuration

LE-SL USY



TABLE 1

ORBIT MANEUVERING ENGINE
 WEIGHT BREAKDOWN

REGENERATIVE CHAMBER

RADIATION NOZZLE

INJECTOR

PROPELLANT VALVE

GIMBAL RING BEARING ATTACHMENTS
GIMBAL ACTUATOKS

DUCTING

ELECTRIC

PNEUMATIC PACKAGE

TOTAL

WEIGHT, POUNDS

37. 4
4]. 2
23.6
38.0
26.0
10.7
2.7
15. 9

195, 5
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TABLE Z

GROUND RULES

COMPONENTS INJECTOR, CHAMBER, NOZZLE
REGENERATIVELY COOLED NOZZLE AREA RATIO: 7

NOZZLE AREA RATIO: 72

CHAMBER LENGTH FOR Gc = 2: 14,7 INCHES
NOZZLE % LENGTH FOR ec =2: 70
CHAMBER LENGTH FOR €c " 3: 12 INCHES

= 3: 73

NOZZLE % LENGTH FOR ¢
- C
INJECTOR AP NOT DEPENDENT ON €
EXPERIMENTAL HEAT FLUX PROFILES
HOT AND COLD WALL THICKNESSES: 0.030 INCHES

REGEN SAFETY FACTOR: 1.5 AT OFF DESIGN

ASR 75-37
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Figure 2. Two-Dimensional Thermal Analysis of Channel Section - Constant Land Width Design
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If a land width much greater than 0.040 inches must be used (generally
because of fabrication constraints ), the two-dimensional penalty can

be significant. For example, the two-dimensional analysis of a configura-
tion with a 0.103-inch wide land (Fig. 3) resulted in a maximum coolant
side wall temperafure of 402 F compared to the one-dimensional value of
389 F. The increased corner temperature implies a higher local heat flux

and resultant reducedllocai safety factor.

All chambers were designed to have a safety factor of 1.5 at the following
off-design conditions: 100 F fuel inlet temperature, 120 psia chamber

pressure and 1.73 propellant mixture ratio.

Guided by previous designs and the data shown in Figs.4 and 5, 120 channels
were selected for all chambers. Land widths of 0.04 inches at the throat

and inner and outer wall thicknesses of 0.03 inches were used for consist-
ency on both chambers. The low contraction ratio chamber could use a
0.05-inch constant land if required by fabrication constraints. Use of the
0.05-inch land on the high contraction ratio chamber would result in
branching. In practice, é very slight reduction in the contraction ratio
from the value of 3:1 would be required to eliminate the branching constraint.
Alternatively, the extraneous lands could be machined out. This would result
in a maximum channel width of 0.26 inches which would be marginal from the
stress consideration and require further analysis. A more detailed discussion

of branching of lands follows.
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CHANNEL GLEOMETRY

Figures 4 and g5 are useful in making the initial estimates of design
parameters for chambers having constant width lands. The geometric
relationships between channel width, land width, and number of channels
are shown in Fig. 4,  If the number of channels is small or the land
width is large, as the straddle mill cutter moves from the throat region
towards the injector-end the increasing chamber circumference results in
the initiation and formafion of a gradually widening land extraneous to
the desired constant-width land. This extraneous land would probably
have to be at least partially machined away to avoid the feather-edge
pointing toward the throat region and may, in the extreme, present an
unacceptably thick laﬁd near the injector-end. The curves shown in Fig. 4
indicate the combinations of channel and land widths and number of
channels which can be used to avoid branching and extraneocus lands. The
branching constraint does not unduly restrict the combination of design
parameters available for a constant land chamber with a contraction ratio
of 2:1 using a straddle mill cutter. For the chamber with a contraction
area ratio of 3:1 and a land width restricted to 0.040 inches or larger
for fabrication and struétural reasons, the number of channels must be
restricted to 120 or less to avoid channel branching. This results in a
channel width of approximately 0.225 inches near the injector-end.
Reducing the number of channels below 120 results in wider channels which
are not structurally acceptable, The sensitivity of the branching con-
straint to the chamber contraction ratio is obvious in Fig, 4 where it is
shown that for a land width of 0.040 inches the maximum allowable number
of channels is approximately doubled in the 2:1 contraction ratio chamber
compared to that of the 3:1 chamber. The constraint on minimum channel

- width is reduced by almost a factor of 4 for the lower contraction area

chamber.

12
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The constant land design is not unduly constrained by channel height
limits as shown in Fig. 5. =~ For typical land widths and number of
channels, the minimum channel height is greater than 0.08 inches for
the small diameter chamber and greater than,075 inches for the 1érger
diameter chamber. Selecting a large number of channels could result
in a large ratio of the land (channel) height to width ratio which
would be somewhat difficult to machine. However, this only occurs

when the number of channels exceeds about 200 for the smaller diameter

chamber.

13



ANALYSES AND RESULTS

The three chambers described above were designed and analyzed to
determine pressure drops and channel height profiles. Weights were
calculated for the chambefs, injectors, and radiation nozzles. The
chamber with the higher contraction area ratio is 2% inches shorter
than the other chambers so that a longer, higher performing nozzle

can be used. Space Shuttle trade factors were used to convert dif-
ferences in weight and pressure drop between the chambers to effective
specific impulse differences. Combining these with the nozzle per-
formance difference resulted in comparisons in performance between the
three chambers for injectors with performance assumed to be eﬁual.
Alternatively, the injector performance requirements for equal effective

specific impulse were determined.

Thermal Analyses

The land width and height profiles required to maintain the required
safety factor at off design conditions in the chamber having constant
channel widths are shown in Figs. 6 and 7. The channel width and

height profiles for the chambers having constant land widths are shown

in Figs. 8 thru 11. Pressure profiles for the three chambers are shown
in Figs. 12 thru 14. The jacket pressure drops and life expectancies are

summarized below.

Construction €. Jacket AP, psi life, cycles
Constant Channel 2 7.7 ' 5100
Constant Land 2 4.1 5100
Constant Land 3 3.9 4500

The drop for the chamber with low contraction ratio and constant width
channels is less than that measured on Rocketdyne's Demonstrator and
Integrated thrust chambers because the latter were designed to accommodate
a theoretical heat flux which was considerably higher than the experimental
profile near the injector, Experimental heat flux profiles are shown in
Figs. 15 and 16.

14
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Weight and Performance Analyses

Jacket weights were calculated from the channel dimension profiles.
Injector, coolant outlet manifold, and radiation nozzle weights for
the high contraction chamber were scaled from the low contraction chamber

weights., The resulting values (pounds) arc tabulated below:

Construction € Jacket Injector Manifold Nozzle Total
Constant Chammel 2 24.0 23.6 11.4 41.2 100.2
Constant Land 2 17.5 23.6 11.4 41.2 93.7
Constant Land 3 17.0 35.4 12.1 42.5 106.8

The results presented in NASA Memorandum EP22/M11-74 were used to estimate
the performance advantage of the longer nozzle used with the high contraction

ratio chamber. The increment was 0.9 seconds specific impulse.
COMPARISONS AND CONCLUSIONS

pDifferences in weights and interface pressures were converted to effective
specific impulse using the following OMS sensitivity data furnished by the

NASA Program Manager

-4 1b éystem inert wt/psi interface pressure (oxidizer and fuel)
3 1b system inert wt/sec engine specific impulse

75 1b system wet wt/sec engine specific impulse

The results are summarized in Table 3 with comparisons made both on_the
basis of OMS wet weight and OMS inert weight. The chambers having constant
width lands are superior to the chamber having constant width channels on
either basis. The low contraction ratio chamber is significantly superior
(3.2 sec) on the basis of inert weight. Comparison based on OMS wet weight
put more emphasis on performance so the longer nozzle of the high contrac -

tion chamber gives it a slight advantage (0.7 sec).
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TABLE 3

SUMMARY OF THRUST CHAMBER ASSEMBLY CHARACTERISTICS

Wt. Difference Equivalent Inlet Equivalent | Nozzle Ig Net Equiv. | Allowable
Configuration € Lb Igs Sec Press., PSI I, Sec Sec Iz, Sec [Loss In T]c* g
. - >
Constant Channel Width 2 Nominal Nominal Nominal Nominal Nominal Nominal Nominal
Inert | Wet _ Inert | Wet Inert | Wet | Inert | Wet
Constant Land Width -2 -6.5 2.2 | 0.1 -3.6 4.8 |o0.2 0 7.0 1 0.3 2.2 {o0.1
Constant Land Width 3 6.6 -2.2 {-0.1 -3.8 5.1 0.2 0.9 3.8 |1.0}] 1.2 {0Q.3
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