11 research outputs found

    A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    Get PDF
    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60-80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt

    Genome-wide <i>in vivo</i> screen identifies novel host regulators of metastatic colonisation

    Get PDF
    Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.status: publishe

    MANIPULATION IN PREDICTION MARKETS – CHASING THE FRAUDSTERS

    No full text
    Prediction markets are a common instrument in forecasting and corporate knowledge management. Based on the “wisdom of the crowd” its forecasts regularly outperform polls as well as statistical models. In addition, it offers a convenient way to collect dispersed information in organizations and incite employees to reveal private information as well as to stay informed. Although such markets are well established, there still remain open questions regarding their operation and maintenance. Especially the issue of manipulation and fraud, which are reported in many cases, is only rarely addressed; if so, only very theoretical or with complex algorithms, hard to implement for practitioners. Yet, a rigid framework, uncovering weaknesses of prediction markets and offering applicable prevention and detection strategies is missing. We propose the Fraud Cube, a concise framework unveiling fraudster’s thought process and thus potential attack vectors. Additionally, we present an easy to implement detection algorithm based on state of the art detection heuristics. Finally, we show not less than comparable detection rates to established detection algorithms whilst providing superior applicability

    Adult human kidney organoids originate from CD24+ cells and represent an advanced model for adult polycystic kidney disease

    No full text
    Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR–Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling

    Trust in scientists and their role in society across 67 countries

    No full text
    Scientific information is crucial for evidence-based decision-making. Public trust in science can help decision-makers act based on the best available evidence, especially during crises such as climate change or the COVID-19 pandemic. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists. Here we interrogated these concerns with a pre-registered 67-country survey of 71,417 respondents on all inhabited continents and find that in most countries, a majority of the public trust scientists and think that scientists should be more engaged in policymaking. We further show that there is a discrepancy between the public’s perceived and desired priorities of scientific research. Moreover, we find variations between and within countries, which we explain with individual-and country-level variables,including political orientation. While these results do not show widespread lack of trust in scientists, we cannot discount the concern that lack of trust in scientists by even a small minority may affect considerations of scientific evidence in policymaking. These findings have implications for scientists and policymakers seeking to maintain and increase trust in scientists
    corecore