110 research outputs found

    An Institutional Approach to Communicating UML State Machines

    Get PDF
    We present a new approach on how to provide institution-based semantics for communicating UML state machines in form of a hybrid modal logic M↓D. A theoroidal comorphism maps M↓D into the CASL institution. This allows for symbolic reasoning on communicating UML state machines

    Institution-Based Encoding and Verification of Simple UML State Machines in CASL/SPASS

    Get PDF

    Influence of Ozone Treatment on Ultrafiltration Performance and Nutrient Flow in a Membrane Based Nutrient Recovery Process from Anaerobic Digestate

    Get PDF
    Membrane filtration of biological suspensions is frequently limited by fouling. This mechanism is well understood for ultrafiltration of activated sludge in membrane bioreactors. A rather young application of ultrafiltration is the recovery of nutrients from anaerobic digestates, e.g., from agricultural biogas plants. A process chain of solid/liquid separation, ultrafiltration, and reverse osmoses separates the digestate into different products: an organic N-P-fertilizer (solid digestate), a recirculate (UF retentate), a liquid N-K-fertilizer (RO retentate) and water. Despite the preceding particle removal, high crossflow velocities are required in the ultrafiltration step to overcome fouling. This leads to high operation costs of the ultrafiltration step and often limits the economical application of the complete process chain. In this study, under-stoichiometric ozone treatment of the ultrafiltration feed stream is investigated. Ozone treatment reduced the biopolymer concentration and apparent viscosity of different digestate centrates. Permeabilities of centrate treated with ozone were higher than without ozone treatment. In a laboratory test rig and in a pilot plant operated at the site of two full scale biogas plants, ultrafiltration flux could be improved by 50–80% by ozonation. Nutrient concentrations in the fertilizer products were not affected by ozone treatment

    A β-Lactamase Based Reporter System for ESX Dependent Protein Translocation in Mycobacteria

    Get PDF
    Protein secretion is essential for all bacteria in order to interact with their environment. Mycobacterium tuberculosis depends on protein secretion to subvert host immune response mechanisms. Both the general secretion system (Sec) and the twin-arginine translocation system (Tat) are functional in mycobacteria. Furthermore, a novel type of protein translocation system named ESX has been identified. In the genome of M. tuberculosis five paralogous ESX regions (ESX-1 to ESX-5) have been found. Several components of the ESX translocation apparatus have been identified over the last ten years. The ESX regions are composed of a basic set of genes for the translocation machinery and the main substrate - a heterodimer. The best studied of these heterodimers is EsxA (ESAT-6)/EsxB (CFP-10), which has been shown to be exported by ESX-1. EsxA/B is heavily involved in virulence of M. tuberculosis. EsxG/H is exported by ESX-3 and seems to be involved in an essential iron-uptake mechanism in M. tuberculosis. These findings make ESX-3 components high profile drug targets. Until now, reporter systems for determination of ESX protein translocation have not been developed. In order to create such a reporter system, a truncated β-lactamase (‘bla TEM-1) was fused to the N-terminus of EsxB, EsxG and EsxU, respectively. These constructs have then been tested in a β-lactamase (BlaS) deletion strain of Mycobacterium smegmatis. M. smegmatis ΔblaS is highly susceptible to ampicillin. An ampicillin resistant phenotype was conferred by translocation of Bla TEM-1-Esx fusion proteins into the periplasm. BlaTEM-1-Esx fusion proteins were not found in the culture filtrate suggesting that plasma membrane translocation and outer membrane translocation are two distinct steps in ESX secretion. Thus we have developed a powerful tool to dissect the molecular mechanisms of ESX dependent protein translocation and to screen for novel components of the ESX systems on a large scale

    Using FPGA Block-RAM for fast white light interferometry

    Get PDF
    White light interferometry is a time consuming operation even on modern architectures. To overcome the high power consumption and size of traditional desktop computers an embedded approach containing the hybrid architecture Zynq will be presented. This architecture contains a dual core ARM and programmable logic provided by an FPGA. FPGAs offer massively parallel logic gates and DSP-slices to parallelise certain tasks. Another important part is the internal memory BRAM. The presented approach aims to speedup calculation time of the ARM processor by utilization of this BRAM. It is well known that memory transfers consume a lot of time. To speed the transfers up, the bottlenecks have to be identified. In this paper it will be illustrated how to easily access an FPGA BRAM from a running operating system and the possible speedup will be analysed and estimated

    Descending aortic calcification increases renal dysfunction and in-hospital mortality in cardiac surgery patients with intraaortic balloon pump counterpulsation placed perioperatively : a case control study

    Get PDF
    Introduction: Acute kidney injury (AKI) after cardiac surgery increases length of hospital stay and in-hospital mortality. A significant number of patients undergoing cardiac surgical procedures require perioperative intra-aortic balloon pump (IABP) support. Use of an IABP has been linked to an increased incidence of perioperative renal dysfunction and death. This might be due to dislodgement of atherosclerotic material in the descending thoracic aorta (DTA). Therefore, we retrospectively studied the correlation between DTA atheroma, AKI and in-hospital mortality. Methods: A total of 454 patients were retrospectively matched to one of four groups: -IABP/-DTA atheroma, +IABP/-DTA atheroma, -IABP/+DTA atheroma, +IABP/+DTA atheroma. Patients were then matched according to presence/absence of DTA atheroma, presence/absence of IABP, performed surgical procedure, age, gender and left ventricular ejection fraction (LVEF). DTA atheroma was assessed through standard transesophageal echocardiography (TEE) imaging studies of the descending thoracic aorta. Results: Basic patient characteristics, except for age and gender, did not differ between groups. Perioperative AKI in patients with -DTA atheroma/+IABP was 5.1% versus 1.7% in patients with -DTA atheroma/-IABP. In patients with +DTA atheroma/+IABP the incidence of AKI was 12.6% versus 5.1% in patients with +DTA atheroma/-IABP. In-hospital mortality in patients with +DTA atheroma/-IABP was 3.4% versus 8.4% with +DTA atheroma/+IABP. In patients with +DTA atheroma/+IABP in hospital mortality was 20.2% versus 6.4% with +DTA atheroma/-IABP. Multivariate logistic regression identified DTA atheroma > 1 mm (P = *0.002, odds ratio (OR) = 4.13, confidence interval (CI) = 1.66 to 10.30), as well as IABP support (P = *0.015, OR = 3.04, CI = 1.24 to 7.45) as independent predictors of perioperative AKI and increased in-hospital mortality. DTA atheroma in conjunction with IABP significantly increased the risk of developing acute kidney injury (P = 0.0016) and in-hospital mortality (P = 0.0001) when compared to control subjects without IABP and without DTA atheroma. Conclusions: Perioperative IABP and DTA atheroma are independent predictors of perioperative AKI and in-hospital mortality. Whether adding an IABP in patients with severe DTA calcification increases their risk of developing AKI and mortality postoperatively cannot be clearly answered in this study. Nevertheless, when IABP and DTA are combined, patients are more likely to develop AKI and to die postoperatively in comparison to patients without IABP and DTA atheroma

    Superimposed high-frequency jet ventilation combined with continuous positive airway pressure/assisted spontaneous breathing improves oxygenation in patients with H1N1-associated ARDS

    Get PDF
    Background: Numerous cases of swine-origin 2009 H1N1 influenza A virus (H1N1)-associated acute respiratory distress syndrome (ARDS) bridged by extracorporeal membrane oxygenation (ECMO) therapy have been reported; however, complication rates are high. We present our experience with H1N1-associated ARDS and successful bridging of lung function using superimposed high-frequency jet ventilation (SHFJV) in combination with continuous positive airway pressure/assisted spontaneous breathing (CPAP/ASB). Methods: We admitted five patients with H1N1 infection and ARDS to our intensive care unit. Although all patients required pure oxygen and controlled ventilation, oxygenation was insufficient. We applied SHFJV/CPAP/ASB to improve oxygenation. Results: Initial PaO2/FiO2 ratio prior SHFJV was 58-79 mmHg. In all patients, successful oxygenation was achieved by SHFJV (PaO2/FiO2 ratio 105-306 mmHg within 24 h). Spontaneous breathing was set during first hours after admission. SHFJV could be stopped after 39, 40, 72, 100, or 240 h. Concomitant pulmonary herpes simplex virus (HSV) infection was observed in all patients. Two patients were successfully discharged. The other three patients relapsed and died within 7 weeks mainly due to combined HSV infection and in two cases reoccurring H1N1 infection. Conclusions: SHFJV represents an alternative to bridge lung function successfully and improve oxygenation in the critically ill

    Microresonator solitons for massively parallel coherent optical communications

    Full text link
    Optical solitons are waveforms that preserve their shape while propagating, relying on a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s, promising to overcome the limitations imposed by dispersion of optical fibers. These approaches, however, were eventually abandoned in favor of wavelength-division multiplexing (WDM) schemes that are easier to implement and offer improved scalability to higher data rates. Here, we show that solitons may experience a comeback in optical communications, this time not as a competitor, but as a key element of massively parallel WDM. Instead of encoding data on the soliton itself, we exploit continuously circulating dissipative Kerr solitons (DKS) in a microresonator. DKS are generated in an integrated silicon nitride microresonator by four-photon interactions mediated by Kerr nonlinearity, leading to low-noise, spectrally smooth and broadband optical frequency combs. In our experiments, we use two interleaved soliton Kerr combs to transmit a data stream of more than 50Tbit/s on a total of 179 individual optical carriers that span the entire telecommunication C and L bands. Equally important, we demonstrate coherent detection of a WDM data stream by using a pair of microresonator Kerr soliton combs - one as a multi-wavelength light source at the transmitter, and another one as a corresponding local oscillator (LO) at the receiver. This approach exploits the scalability advantages of microresonator soliton comb sources for massively parallel optical communications both at the transmitter and receiver side. Taken together, the results prove the significant potential of these sources to replace arrays of continuous-wave lasers in high-speed communications.Comment: 10 pages, 3 figure
    • …
    corecore