
59th ILMENAU SCIENTIFIC COLLOQUIUM 
Technische Universität Ilmenau, 11 – 15 September 2017 

URN: urn:nbn:de:gbv:ilm1-2017iwk-013:8 

©2017 - TU Ilmenau

USING FPGA BLOCK-RAM FOR FAST WHITE LIGHT INTERFEROMETRY 

T. Scholz, M. Rosenberger and G. Notni

Research fellow, Group for Quality Assurance and Industrial Image Processing, 
TU-Ilmenau, Newtonbau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau  

ABSTRACT 

White light interferometry is a time consuming operation even on modern architectures. To 
overcome the high power consumption and size of traditional desktop computers an 
embedded approach containing the hybrid architecture Zynq will be presented. This 
architecture contains a dual core ARM and programmable logic provided by an FPGA. 
FPGAs offer massively parallel logic gates and DSP-slices to parallelise certain tasks. 
Another important part is the internal memory BRAM. The presented approach aims to 
speedup calculation time of the ARM processor by utilization of this BRAM. It is well known 
that memory transfers consume a lot of time. To speed the transfers up, the bottlenecks have 
to be identified. In this paper it will be illustrated how to easily access an FPGA BRAM from 
a running operating system and the possible speedup will be analysed and estimated. 

Index Terms - Zynq, FPGA, white light interferometry, BRAM, Xilinx, Linux 

1. INTRODUCTION

White light interferometry is a key technology in measurement for surface reconstruction. It is 
a very precise method with accuracy in nanometre range. A stack of images is recorded and 
interpreted pixel-wise. By the use of piezo positioning systems and scanning characteristic 
interferometry fringes are visible as shown in Figure 1. 
A huge amount of data must be processed. Depending on the measurement range the image 
acquisition takes up to minutes, which can lead to problems because the environmental 
conditions (e.g. temperature, vibration) for the unit under test are likely to change in that time. 
In the second stage this stored data must be reconstructed into a 3d surface. Every pixel is 
independent from their neighbours, which allows for a high degree of parallelisation. 
Today, this family of tasks is solved by using massive parallel processors. Typical 
representatives of that are computer clusters or general purpose programmable graphics 
processing units (GPUs). Another part of this family are field-programmable gate arrays 
(FPGAs). Combined with general purpose processors of the ARM-family, they offer an easy 
to use programming architecture, using high-level languages and well-known operating 
systems.  
On the other hand, this requires additional effort for the implementation due to the shared use 
of RAM. Typically, the RAM in embedded systems is smaller compared to desktop 
computers or consumer-class GPUs. Physically near distant memory is a lot faster but lacking 
in size. Common examples are cache in CPUs or block-ram (BRAM) in FPGAs. While faster 
memory is preferable for computation speed, algorithms tend to require more than what is 
available. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224746109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017iwk-013:8


©2017 - TU Ilmenau  2 

These challenges must be faced when using any kind of processing unit for white light 
interferometry. While the processing system is easy to program the programmable logic needs 
a much higher implementation time. To avoid bottlenecks, it is necessary to source out the 
heavy load operations to the PL and also keep the time for memory operations in mind. 
 

 
Figure 1 characteristic white light fringes of a micro step surface acquired by 8 bit grey value camera 

 
 

2. WHITE LIGHT INTERFEROMETRY SYSTEM WORKING CONDITIONS 
 
In practical use there are several reconstruction algorithms for accurate white light 
interferometry. Most of them rely in some way on Fourier transform implementations like 
FFT. Even if it is possible to calculate the algorithm over the complete raw values it is more 
straight-forward to use a fast algorithm preselecting the area of interest and use an accurate 
algorithm only there.  
In Figure 2 the grey values for a single pixel acquired by scanning different positions by the 
use of a piezo positioning system are shown. It is easy to see the position of the maximum 
which is located near the real maximum of the white light fringe. Nevertheless, finding this 
maximum is a time consuming operation, since the memory in modern computers is too 
limited. This is even more emphasised in the embedded world. The data acquired by an image 
sensor or read from a mass storage are images. To process data it is advisable to reorder the 
raw data in a format suiting the needs of the algorithms. Doing so in general purpose 
processors is easy to implement but slow. Every operation has to be read in the processor 
cache and written back to the new position in the memory. This can be done in a 
multithreaded environment and relates directly to the size of the processor cache as well as the 
number of processors. During this time it is not wise to use the processor for other operations 
to not interfere the reorganization process. This leads directly to the idea of outsourcing the 
memory reorganization process to a different architecture, preferably to a massively parallel 
one – in this case FPGA-based programmable logic. 
Profiling is a very important part of this task. Optimizing this class of memory operations is 
highly platform specific and needs exact knowledge of the throughput and bandwidth. At first 
it is necessary to compare the time to find the maximum directly. This must be done for single 
pixels and for a several ones to find the bottlenecks and the maximum speed to reach. This 
will be compared in the two use cases: sorted data and raw values. Additionally it is necessary 



©2017 - TU Ilmenau  3 

to know the user space bandwidth of the memory operations. Therefor the copy from memory 
to memory needs to be clarified. 
As a first step to reach a speedup, internal FPGA BRAM has to be made accessible to read 
and write. To achieve this in the programmable logic the memory must be initialized and 
made accessible from the user space of the processing system. Afterwards reading and writing 
between the two levels have to be measured in the aspects bandwidth and throughput. 
As a last step it is necessary to synthesise the programmable logic and upload the bitstream to 
use the FPGA to optimize the overall performance. Both work independently in different 
clock domains. For that reason some kind of access control needs to be used for a productive 
environment. Otherwise unreproducible errors may appear as the memory is not exclusively 
accessed by either side. In the processing system this is usually covered by the use of mutual 
exclusion (MUTEX) or semaphores. These can be used in Vivado too, but add some overhead 
and need to be implemented carefully weighing the pros and cons. 
 

 
 

 

2.1 Summary 
 
In the Zynq architecture the FPGA-based programmable logic is independent from the ARM 
processing. Additionally the FPGA is a massive parallel system which can lead to heavy 
speedups in concurrent algorithms. In white light interferometry the pixels are independent 
from their neighbours so this method is concurrent by design, which makes FPGAs especially 
suited. While there are other massively parallel architectures, FPGAs are arguably more 
versatile and at a lower power consumption. From this point of view it is a logical step to 
investigate the abilities offered by this architecture in addition to conventional easy to 
program systems to support their abilities. 

Figure 2 raw values for a single pixel 



©2017 - TU Ilmenau  4 

3. COMPUTING SYSTEM SETUP 
 
The primary development is done on a Zynq-7000 device of the vendor Xilinx. This is a 
hybrid architecture with dual core ARM Cortex-A9 and programmable logic. Detailed 
specifications are given in Table 1. As reference architecture for speed comparisons serves an 
i7-6700k [1]. 
 
 

Table 1 Z-turn specification 

CPU 
frequency 

L1 cache L2 cache RAM #36 Kb BRAM Programmable 
logic cells 

2x667 
MHz 

2x32 KB 512 KB 2x512 MB, 32 bit 140 (4.9 Mb) 85K 

[2], [3] 
 
To ensure the fastest, most versatile and comparable software possible, a Gentoo Linux drives 
both ARM and x86 systems. The applied compiler optimizations can be found in Table 2. 
CFLAGS and CPU_FLAGS are used to compile the whole operating system while the 
CXXFLAGS are used in a “Makefile” to compile the test programs. Additionally the library 
“pthread” was linked to add multithreading abilities. 
 

Table 2 compiler optimizations used for the architectures 

Architecture CFLAGS CPU_FLAGS CXXFLAGS Compiler 
x86_64 -O2 

-pipe  
-march=broadwell 

aes avx fma3 mmx 
mmxext popcnt sse 
sse2 sse3 sse4_1 
sse4_2 ssse3 

-std=c++14 
-O2 

g++-5.4.0-r3 

ARM -O2  
-march=armv7-a  
-mtune=cortex-a9 
-mfpu=vfpv3-d16  
-mfloat-abi=hard  
-pipe  
-fomit-frame-pointer 

 -std=c++14 
-O2 

g++-5.4.0-r3 

  
The first stage boot loader was created using the Xilinx tools Vivado and SDK in the version 
2016.4. Same applies to the creation of the bit file loaded to initialize the programmable logic. 
Currently only a single clock domain is used to access the BRAM from the processing system 
and also to reorder the raw data. For stability purpose this value is set to 50 MHz. 
The above-mentioned compiler options are fundamental. Modern processing units offer great 
optimisation potential. Most efficient is the use of single instruction multiple data (SIMD) 
extensions like Neon or SSE. While this offers a lot of potential, it also can lead to code not 
usable in cross-platform projects because they heavily depend on the architecture. Others can 
be used with less effort by instructing the compiler to run optimisations. Using the gcc as 
compiler the -O flag is an important optimisation option. The higher the number the more 
effort is put in the optimisation. From experience a too aggressive option can induce 
instability and for some operations even slower executables. For that reason the stable but fast 
optimization flag -O2 was used. This procedure is important cause modern compilers offer 
huge improvements to optimize high level language code. Especially in heavy load situations 
to help the branch predictor in the processing unit to run the executable.  



©2017 - TU Ilmenau  5 

4. IMPLEMENTATION 
 
In order to be able to communicate between the processing system and the programmable 
logic the new Xilinx design tool Vivado helps a lot for the Zynq architecture. Necessary parts 
are the IP blocks Zynq Processing System, BRAM Controller and Block Memory Generator. 
The auto configuration scripts provided by the vendor simplify the expenditure to create a 
synthesizable design to read and write from and into BRAM. Additionally in this use-case a 
custom block was created with the ability to access the BRAM.  
The physical addresses of each BRAM can be configured in the Vivado address editor. It is 
important to set the addresses in a range not already covered by the RAM. Also overlapping 
addresses have to be avoided. 
Linux is a versatile and powerful operating system for embedded systems. The majority of 
distributions offer numerous programs and libraries to allow fast development in this area. For 
this purpose a C compiler and the Linux headers allow data exchange between both systems. 
To reach this the system call mmap is used. Originally this was implemented in 4.2 BSD in 
the year 1983 [4]. For this implementation the Linux version was used [5]. To make use of the 
more versatile and easy to use changes in modern C++ a slightly modified version to access 
this call was created. 
This is used as a basis to benchmark the throughput between the programmable logic and the 
processing system in user space running the Linux operating system. To ensure comparability 
much more data is written than the BRAM can handle at a time.  
 

5. RESULTS 
 
The self-written VHDL IP reads the data from a BRAM and writes to other BRAMs in the 
right order. The read and write commands have a latency of 1 clock cycle. To reorder a single 
pixel already existent in BRAM to another one needs 501 clock cycles in the case of 500 raw 
pictures. This can be optimized by reading 4 pixels at the same time and save them in 4 
different BRAMs and change the address simultaneously. Expecting 1024x1024 pixel images 
this approach needs 500 KB to store all values for the first line and nearly the same as 
temporary data cache. To simplify it only reading half the line at a time leads to an expected 
copy time of 2048x501x128 clock cycles. Using 50 MHz to drive the AXI clock the FPGA 
time to read and write in the reorganised memory needs round about 2.6 s. In addition there is 
an overhead to synchronize the start and stop signals as well as the time to copy the data 
between the processing system and the programmable logic. This was done in a pipeline. 
 

Table 3 measured time to get the maximum per pixel 

 find 
maximum 
unsorted 

sort find 
maximum 
sorted 

overall 
time 

BRAM 
operations 

time 
using 
BRAM 

speedup 

Zynq 211 s 195 s 9.4 s 204.4 s 10.7 s 20.1 s 9.7 
i7 1.9 s 0.8 s 0.05 s 0.85 s   2.2 
 
Using the processing system on the Zynq to find the maximum per pixel is a demanding 
operation. There is much difference between the sorted raw data and the not sorted raw data. 
Nevertheless the time to sort the pixel data in the right order is time and memory consuming. 
For further operations this is a good approach but to find the maximum it is an overrated 
approach. Copying and reading the results using the internal FPGA memory is much faster 



©2017 - TU Ilmenau  6 

and the time to order is orders faster. So using the BRAM to sort the memory leads to a 
speedup factor of nearly 10. 
Compared to the above-mentioned reference system the overall time to sort and find the 
maximum is much higher. The most demanding operation are the read and writes between 
both architectures. The measured times for the different processors and the detailed operations 
are shown in Table 3. 
 

6. CONCLUSIONS AND FUTURE WORK 
 
FPGAs are versatile and fast devices to solve multithreaded tasks. While there are other 
architectures like CPU clusters or GPUs, this kind of hardware is superior in power 
consumption. They are powerful and versatile architectures as a coprocessor to accelerate 
demanding tasks and also standalone in real-time situations. To improve the overall 
calculation time needed for white light interferometry they offer great potential. 
Disadvantageous is the expenditure of time to implement the algorithms in the programmable 
logic. As expected the data operations to read and write between processing system and 
programmable logic have a huge impact.  
To lower this, more logic to preprocess the data has to be implemented in future work. 
Another big improvement could be to switch from user space to kernel space and use direct 
memory access. By this approach the data should be more independent from the cache of the 
processor. 
 

7. ACKNOWLEDGEMENT 
The approaches presented in this paper are sponsored by the federal ministry of education and 
research (BMBF, FKZ: 03ZZ0427G). 
 
 
 
 
 
 
 
 
 
 
 
 
REFERENCES 
 
[1]  Intel, "Core i7-6700K Processor," Intel, [Online]. Available: 

https://ark.intel.com/products/88195/Intel-Core-i7-6700K-Processor-8M-Cache-up-to-
4_20-GHz. [Accessed 11 07 2017]. 

[2]  Xilinx, "Xilinx Support Data Sheets," 07 06 2017. [Online]. Available: 
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-
Overview.pdf. [Accessed 13 07 2017]. 

[3]  M. T. Limited, "Z-Turn Board Overview," 12 02 2014. [Online]. Available: 
http://www.myirtech.com/download/Zynq7000/Z-turnBoard.pdf. [Accessed 14 07 2017]. 



©2017 - TU Ilmenau  7 

[4]  W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick and D. Mosher, "4.2 BSD System 
Manual," 07 1983. [Online]. Available: 
https://cdn.preterhuman.net/texts/manuals/4.2BSD%20UNIX%20System%20Manual.pdf. 
[Accessed 11 07 2017]. 

[5]  M. Kerrisk, "Linux Programmer's Manual," 03 05 2017. [Online]. Available: 
http://man7.org/linux/man-pages/man2/mmap.2.html. [Accessed 11 07 2017]. 

 
 
CONTACTS 
 
T. Scholz     tobias.scholz@tu-ilmenau.de 
Dr.-Ing. M. Rosenberger   maik.rosenberger@tu-ilmenau.de 
Univ.-Prof. Dr. rer. nat. G. Notni  gunther.notni@tu-ilmenau.de 
 


