
Institution-based Encoding and Verification of
Simple UML State Machines in CASL/SPASS

Tobias Rosenberger1,2, Saddek Bensalem2,
Alexander Knapp3, and Markus Roggenbach1

1 Swansea University, U.K.
{t.rosenberger.971978, m.roggenbach}@swansea.ac.uk

2 Université Grenoble Alpes, France
Saddek.Bensalem@imag.fr

3 Universität Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract. We present a new approach on how to provide institution-based seman-
tics for UML state machines. Rather than capturing UML state machines directly
as an institution, we build up a new logical frameworkM↓D into which UML
state machines can be embedded. A theoroidal comorphism mapsM↓D into the
Casl institution. This allows for symbolic reasoning on UML state machines. By
utilising the heterogeneous toolset HeTS that supports Casl, a broad range of
verification tools, including the automatic theorem prover Spass, can be combined
in the analysis of a single state machine.

1 Introduction

As part of a longstanding line of research [9,10,19,8], we set out on a general programme
to bring together multi-view system specification with UML diagrams and heterogeneous
specification and verification based on institution theory, giving the different system
views both a joint semantics and richer tool support.

Institutions, a formal notion of a logic, are a principled way of creating such joint
semantics. They make moderate assumptions about the data constituting a logic, give
uniform notions of well-behaved translations between logics and, given a graph of such
translations, automatically give rise to a joint institution.

In this paper, we will focus on UML state machines, which are an object-based variant
of Harel statecharts. Within the UML, state machines are a central means to specify
system behaviour. Here, we capture simple UML state machines in what we claim to be
a true semantical sense. Focus of this paper are state machines running in isolation —
interacting state machines and with it the notion of the event pool are left to future work.

Compared to our previous attempts to institutionalise state machines [9,10,19,8], this
paper takes a different approach. Rather than capturing UML state machines directly as
an institution, we build up a new logical frameworkM↓D in which UML state machines
can be embedded. Core of this framework is a new hybrid modal logic which allows us to
logically encode the presence as well as the absence of transitions in the state machines.
Data types, guards, and effects of events are specified in the algebraic specification
language Casl. An algorithm translates UML state machines intoM↓D.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/341363847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A theoroidal comorphism maps our logical frameworkM↓D into the Casl institution.
This allows to us to utilise the heterogeneous toolset HeTS [15] and its connected provers
for analysing UML state machines. In this paper we demonstrate how to analyse a state
machine with the automatic first-order prover Spass [20], which is the default automated
prover of HeTS. Such symbolic reasoning can be of advantage as, in principle, it allows
to verify properties of UML state machines with large or infinite state spaces. Such
machines appear routinely in system modelling: though state machines usually have only
finitely many control states, they have a large number of configurations, or even infinitely
many, due to the data variables involved.

Compared to other symbolic approaches to directly encode UML state machines into a
specific interactive theorem prover [11,5,1], our logical frameworkM↓D provides first an
institutional semantics that is tool independent. Only in a second step, we translateM↓D
into Casl. Via HeTS, this opens access to a broad range of analysis tools, including SAT
solvers, automatic first-order theorem provers, automated and interactive higher-order
theorem provers, which all can be combined in the analysis of state machines.

This paper is organised as follows: First we provide some background on institutions,
including the Casl institution in Sect. 2. Then we discuss simple UML state machines,
how to capture their events, attributes, and transitions, and what their models are.
In Sect. 4 we define a new hybrid, modal logic for specifying UML state machine
transitions. Section 5 provides the translation into the Casl institution. In Sect. 6, we
finally demonstrate the symbolic analysis of a simple UML state machine as enabled by
the previous constructions. We conclude in Sect. 7 with an outlook to future work. A
version of this paper including full proofs has been published in [?].

2 Background on Institutions

We briefly recall the basic definitions of institutions and theoroidal institution comor-
phisms as well as the algebraic specification language Casl. Subsequently we will
develop an institutional frame for capturing simple UML state machines and present a
theoroidal institution comorphism from this frame into Casl.

2.1 Institutions and Theoroidal Institution Comorphisms

Institutions are an abstract formalisation of the notion of logical systems combining
signatures, structures, sentences, and satisfaction under the slogan “truth is invariant
under change of notation”. Institutions can be related in different ways by institution
(forward) (co-)morphisms, where a so-called theoroidal institution comorphism covers a
particular case of encoding a “poorer” logic into a “richer” one.

Formally [4], an institution I = (SI ,StrI ,SenI , |=I) consists of (i) a category
of signatures SI ; (ii) a contravariant structures functor StrI : (SI)

op → Cat, where
Cat is the category of (small) categories; (iii) a sentence functor SenI : SI → Set,
where Set is the category of sets; and (iv) a family of satisfaction relations |=IΣ ⊆
|StrI(Σ)| × SenI(Σ) indexed over Σ ∈ |SI |, such that the following satisfaction
condition holds for all σ : Σ → Σ′ in SI , ϕ ∈ SenI(Σ), andM ′ ∈ |StrI(Σ′)|:

StrI(σ)(M ′) |=IΣ ϕ ⇐⇒ M ′ |=IΣ′ SenI(σ)(ϕ) .

2

spec Nat =
free type Nat ::= 0 | suc(Nat)
ops __+__ : Nat × Nat→ Nat
pred __<__ : Nat × Nat
∀ n, m : Nat · 0 + n = n · suc(n) + m = suc(n + m)

· ¬ n < 0 · 0 < suc(n) · suc(m) < suc(n)⇔ m < n
end

Fig. 1. A Casl specification of the natural numbers

StrI(σ) is called the reduct functor, SenI(σ) the translation function.
A theory presentation T = (Σ,Φ) in the institution I consists of a signature

Σ ∈ |SI |, also denoted by Sig(T), and a set of sentences Φ ⊆ SenI(Σ). Its model
class ModI(T) is the class {M ∈ StrI(Σ) |M |=IΣ ϕ f. a. ϕ ∈ Φ} of theΣ-structures
satisfying the sentences in Φ. A theory presentation morphism σ : (Σ,Φ) → (Σ′, Φ′)
is given by a signature morphism σ : Σ → Σ′ such thatM ′ |=IΣ′ SenI(σ)(ϕ) for all
ϕ ∈ Φ andM ′ ∈ ModI(Σ′, Φ′). Theory presentations in I and their morphisms form
the category PresI .

A theoroidal institution comorphism ν = (νS, µMod, νSen) : I → I ′ consists of a
functor νS : SI → PresI

′
inducing the functor νSig = νS;Sig : SI → SI′ on signatures,

a natural transformation νMod : (νS)
op

; ModI
′
→̇ StrI on structures, and a natural

transformation νSen : SenI →̇ νSig ; SenI
′
on sentences, such that for all Σ ∈ |SI |,

M ′ ∈ |ModI
′
(νS(Σ))|, and ϕ ∈ SenI(Σ) the following satisfaction condition holds:

νMod
Σ (M ′) |=IΣ ϕ ⇐⇒ M ′ |=I

′

νSig(Σ) ν
Sen(Σ)(ϕ) .

2.2 Casl and the Institution CFOL=

The algebraic specification language Casl [16] offers several specification levels: Basic
specifications essentially list signature declarations and axioms, thus determining a
category of first-order structures. Structured specifications serve to combine such basic
specifications into larger specifications in a hierarchical and modular fashion. Of the
many logics available in Casl, we will work with the institution CFOL=, of which we
briefly recall the main notions; a detailed account can be found e.g. in [14].

At the level of basic specifications, cf. Fig. 1, one can declare sorts, operations, and
predicates with given argument and result sorts. Formally, this defines a many-sorted
signatureΣ = (S, F, P) with a set S of sorts, a S∗×S-sorted family F = (Fw,s)w s∈S+

of total function symbols, and a S∗-sorted family P = (Pw)w∈S∗ of predicate symbols.
Using these symbols, one may then write axioms in first-order logic. Moreover, one
can specify data types, given in terms of alternatives consisting of data constructors
and, optionally, selectors, which may be declared to be generated or free. Generatedness
amounts to an implicit higher-order induction axiom and intuitively states that all
elements of the data types are reachable by constructor terms (“no junk”); freeness
additionally requires that all these constructor terms are distinct (“no confusion”). Basic
Casl specifications denote the class of all algebras which fulfil the declared axioms, i.e.,
Casl has loose semantics. In structured Casl specifications, a structured free construct

3

s1cnt = 0 s2

inc(x)[cnt+ x = 4]/
cnt′ = 4

inc(x)[cnt+ x ≤ 4]/
cnt′ = cnt+ x

inc(x)[cnt+ x > 4]/cnt′ = cnt
reset/cnt′ = cnt

reset/cnt′ = 0

inc(x)/cnt′ = cnt

Fig. 2. Simple UML state machine Counter

can be used to ensure freeness (i.e., initial semantics) of a specification. For functions
and predicates, the effect of the structured free construct corresponds to the effect of free
types on sorts. A many-sorted Σ-structureM consists of a non-empty carrier set sM for
each s ∈ S, a total function fM : Mw →Ms for each function symbol f ∈ Fw,s and a
predicate pM for each predicate symbol p ∈ Pw. A many-sorted Σ-sentence is a closed
many-sorted first-order formula over Σ or a sort generation constraint.

3 Simple UML State Machines

UML state machines [17] provide means to specify the reactive behaviour of objects
or component instances. These entities hold an internal data state, typically given by a
set of attributes or properties, and shall react to event occurrences by firing different
transitions in different control states. Such transitions may have a guard depending on
event arguments and the internal state and may change, as an effect, the internal control
and data state of the entity as well as raise events on their own.

Figure 2 shows the example of a bounded, resettable counter working on an attribute
cnt (assumed to take values in the natural numbers) that is initialised with 0. The counter
can be reset to 0 or increased by a natural number x, subject to the current control state
(s1 or s2) and the guards (shown in square brackets) and effects (after the slash) of the
outgoing transitions. An effect describes how the data state before firing a transition
(referred to by unprimed attribute names) relates to the data state after (primed names) in
a single predicate; this generalises the more usual sequences of assignments such that
cnt′ = cnt + x corresponds to cnt ← cnt + x and cnt′ = cnt to a skip. The machine
is specified non-deterministically: If event inc(x) occurs in state s1 such that the guard
cnt + x = 4 holds, the machine can either stay in s1 or it can proceed to s2 . Seemingly,
the machine does not react to reset in s1 and to inc in s2 . However, UML state machines
are meant to be input-enabled such that all event occurrences to which the machine
shows no explicit reacting transition are silently discarded, as indicated by the “grey”
transitions. Overall, the machine Counter shall ensure that cnt never exceeds 4.

It is for such simple UML state machines as the counter in Fig. 2 that we want
to provide proof support in Spass via an institutional encoding in Casl. The sub-
language covers the following fundamental state machine features: data, states, and
(non-deterministic) guarded transitions for reacting to events. However, for the time
being, we leave out not only all advanced modelling constructs, like hierarchical states
or compound transitions, but also defer, most importantly, event-based communication

4

between state machines to future work. In the following we make first precise the syntax
of the machines by means of event/data signatures, data states and transitions, guards
and effects. Then we introduce semantic structures for the machines and define their
model class. Syntax and semantics of simple UML state machines form the basis for
their institutionalisation. We thus also introduce event/data signature morphisms and the
corresponding formulæ translation and structure reducts in order to be able to change the
interface of simple UML state machines.

3.1 Event/Data Signatures, Data States and Transitions

We capture the events for a machine in an event signature E that consists of a finite set
of events |E| and a map υ(E) assigning to each e ∈ |E| a finite set of variables, where
we write e(X) for e ∈ |E| and υ(E)(e) = X , and also e(X) ∈ E in this case. For the
data state, we use a data signature A consisting of a finite set of attributes. An event/data
signature Σ consists of an event signature E(Σ) and a data signature A(Σ).

Example 1. The event/data signatureΣ of the simpleUML statemachine in Fig. 2 is given
by the set of events |E(Σ)| = {inc, reset}with argument variables υ(E(Σ))(inc) = {x}
and υ(E(Σ))(reset) = ∅ such that inc(x) ∈ E(Σ) and reset ∈ E(Σ); as well as the
data signature A(Σ) = {cnt}.

For specifying transition guards and effects, we exchange UML’s notorious and
intricate expression and action languages both syntactically and semantically by a
straightforward Casl fragment rendering guards as data state predicates and effects as
data transition predicates: We assume given a fixed universeD of data values and a Casl
specification Dt with a dedicated sort dt in its signature Sig(Dt) such that the universe
dtM of every model M ∈ ModCasl(Dt) is isomorphic to D, i.e., there is a bijection
ιM,dt : dtM ∼= D. This puts at our disposal the open formulæ F Casl

Sig(Dt),X over sorted
variables X = (Xs)s∈S and their satisfaction relationM,β |=Casl

Sig(Dt),X ϕ for models
M ∈ ModCasl(Dt), variable valuations β : X →M , and formulæ ϕ ∈ F Casl

Sig(Dt),X .

Example 2. Consider the natural numbers N as data values D. The Casl specification in
Fig. 1 characterises N up to isomorphism as the carrier set of the dedicated sort dt = Nat.
It specifies an abstract data type with sort Nat, operations +, 0, suc, and a predicate < .

The very simple choice of D capturing data with only a single sort can, in principal,
be replaced by any institutional data modelling language that, for our purposes of a
theoroidal institution comorphism (see Sect. 5), is faithfully representable in Casl; one
such possibility are UML class diagrams, see [7].

Data states and guards. A data state ω for a data signature A is given by a function
ω : A → D; in particular, Ω(A) = DA is the set of A-data states. The guards of a
machine are state predicates inFDA,X = F Casl

Sig(Dt),A∪X , takingA as well as an additional
set X as variables of sort dt . A state predicate φ ∈ FDA,X is to be interpreted over an
A-data state ω and valuation β : X → D and we define the satisfaction relation |=D by

ω, β |=DA,X φ ⇐⇒ M, ι−1
M,dt ◦ (ω ∪ β) |=Casl

Sig(Dt),A∪X φ

5

whereM ∈ ModCasl(Dt) and ιM,dt : M(dt) ∼= D. For a state predicate ϕ ∈ FDA,∅ not
involving any variables, we write ω |=DA ϕ for ω |=DA,∅ ϕ.

Example 3. The guard cnt + x ≤ 4 of the machine in Fig. 2 features both the attribute
cnt and the variable x. A data state fulfilling this state predicate for x = 0 is cnt 7→ 3.

Data transitions and effects. A data transition (ω, ω′) for a data signature A is a pair
of A-data states; in particular, Ω2(A) = (DA)2 is the set of A-data transitions. It holds
that (DA)2 ∼= D2A, where 2A = A]A and we assume that no attribute in A ends in a
prime ′ and all attributes in the second summand are adorned with an additional prime.
The effects of a machine are transition predicates in F 2D

A,X = FD2A,X . The satisfaction
relation |=2D for a transition predicate ψ ∈ F 2D

A,X , data transition (ω, ω′) ∈ Ω2(A), and
valuation β : X → D is defined as

(ω, ω′), β |=2D
A,X ψ ⇐⇒ ω + ω′, β |=D2A,X ψ

where ω + ω′ ∈ Ω(2A) with (ω + ω′)(a) = ω(a) and (ω + ω′)(a′) = ω′(a).

Example 4. The effect cnt′ = cnt + x of the machine in Fig. 2 describes the increment
of the value of attribute cnt by a variable amount x.

3.2 Syntax of Simple UML State Machines

A simple UML state machine U uses an event/data signature Σ(U) for its events and
attributes and consists of a finite set of control states C(U), a finite set of transition
specifications T (U) of the form (c, φ, e(X), ψ, c′)with c, c′ ∈ C(U), e(X) ∈ E(Σ(U)),
a state predicate φ ∈ FDA(Σ(U)),X , a transition predicate ψ ∈ F 2D

A(Σ(U)),X , an initial
control state c0(U) ∈ C(U), and an initial state predicate ϕ0(U) ∈ FDA(Σ(U)),∅, such
that C(U) is syntactically reachable, i.e., for every c ∈ C(U) \ {c0(U)} there are
(c0(U), φ1, e1(X1), ψ1, c1), . . . , (cn−1, φn, en(Xn), ψn, cn) ∈ T (U) with n > 0 such
that cn = c. Syntactic reachability guarantees initially connected state machine graphs.
This simplifies graph-based algorithms (see Alg. 1).

Example 5. The machine in Fig. 2 has as its control states {s1 , s2}, as its transition
specifications {(s1 , cnt + x ≤ 4, inc(x), cnt′ = cnt + x, s1), (s1 , cnt + x = 4, inc(x),
cnt′ = 4, s2), (s2 , true, reset, cnt′ = 0, s1)}, as initial control state s1 , and as initial
state predicate cnt = 0.

3.3 Event/Data Structures and Models of Simple UML State Machines

For capturing machines semantically, we use event/data structures that are given over
an event/data signature Σ and consist of a transition system of configurations such that
all configurations are reachable from its initial configurations. Herein, configurations
show a control state, corresponding to machine states, and a data name from which a
proper data state over A(Σ) can be retrieved by a labelling function. Transitions connect
configurations by events from E(Σ) with their arguments instantiated by data from D.

6

Formally, aΣ-event/data structureM = (Γ,R, Γ0, ω) over an event/data signatureΣ
consists of a set of configurations Γ ⊆ C ×D for some sets of control states C and data
names D, a family of transition relations R = (Re(β) ⊆ Γ × Γ)e(X)∈E(Σ),β : X→D,
and a non-empty set of initial configurations Γ0 = {c0} × D0 ⊆ Γ with a unique
initial control state c0 ∈ C such that Γ is reachable via R, i.e., for all γ ∈ Γ there
are γ0 ∈ Γ0, n ≥ 0, e1(X1), . . . , en(Xn) ∈ E(Σ), β1 : X1 → D, . . . , βn : Xn → D,
and (γi, γi+1) ∈ Rei+1(βi+1) for all 0 ≤ i < n with γn = γ; and a data state labelling
ω : D → Ω(A(Σ)). We write c(M)(γ) = c and ω(M)(γ) = ω(d) for γ = (c, d) ∈ Γ ,
Γ (M) for Γ , C(M) for {c(M)(γ) | γ ∈ Γ (M)}, R(M) for R, Γ0(M) for Γ0, c0(M)
for c0, and Ω0(M) for {ω(M)(γ0) | γ0 ∈ Γ0}.

The restriction to reachable transition systems is not strictly necessary and could be
replaced by constraining all statements on event/data structures to take into account only
their reachable part (see, e.g., Lem. 1).

Example 6. For an event/data structure for the machine in Fig. 2 over its signature Σ in
Ex. 1 we may choose the control states C as {s1 , s2}, and the data names D as the set
Ω(A(Σ)) = D{cnt}. In particular, the data state labelling ω is just the identity. The only
initial configuration is (s1 , {cnt 7→ 0}). A possible transition goes from configuration
(s1 , {cnt 7→ 2}) to configuration (s2 , {cnt 7→ 4}) with the instantiated event inc(2).

A Σ(U)-event/data structure M is a model of a simple UML state machine U
if C(U) ⊆ C(M) up to a bijective renaming, c0(M) = c0(U), Ω0(M) ⊆ {ω ∈
|Ω(A(Σ(U)))| | ω |=DA(Σ(U)) ϕ0(U)}, and if the following holds for all (c, d) ∈ Γ (M):

– for all (c, φ, e(X), ψ, c′) ∈ T (U) and β : X → D with ω(M)(d), β |=DA(Σ(U)),X φ,
there is a ((c, d), (c′, d′)) ∈ R(M)e(β) with (ω(M)(d), ω(M)(d′)), β |=2D

A(Σ(U)),X ψ;
– for all ((c, d), (c′, d′)) ∈ R(M)e(β) there is either some (c, φ, e(X), ψ, c′) ∈ T (U)
with ω(M)(d), β |=DA(Σ(U)),X φ and (ω(M)(d), ω(M)(d′)), β |=2D

A(Σ(U)),X ψ, or
ω(M)(d), β 6|=DA(Σ(U)),X

∨
(c,φ,e(X),ψ,c′)∈T (U) φ, c = c′, andω(M)(d) = ω(M)(d′).

A model of U thus on the one hand implements each transition prescribed by U ,
but on the other hand must not show transitions not covered by the specified transitions.
Moreover, it is input-enabled, i.e., every event can be consumed in every control state:
If no precondition of an explicitly specified transition is satisfied, there is a self-loop
which leaves the data state untouched. In fact, input-enabledness, as required by the
UML specification [17], can also be rendered as a syntactic transformation making a
simple UML state machine U input-enabled by adding the following set of transition
specifications for idling self-loops:

{(c,¬(
∨

(c,φ,e(X),ψ,c′)∈T (U) φ), e(X), 1A(Σ(U)), c) | c ∈ C, e(X) ∈ E(Σ(U))} .

Example 7. For the simple UML state machine in Fig. 2 the “grey” transitions correspond
to an input-enabledness completion w.r.t. the “black” transitions.

The requirement of syntactic reachability for simple UML state machines is correlated
with the requirement of (semantic) reachability of event/data structures, as a machine
violating syntactic reachability cannot have a model. Equally, a machine with a non-
satisfiable initial state predicate fails to have a model.

7

3.4 Event/Data Signature Morphisms, Reducts, and Translations

The external interface of a simple UML state machine is given by events, its internal
interface by attributes. Both interfaces, represented as an event/data signature, are
susceptible to change in the system development process which is captured by signature
morphisms. Such changes have also to be reflected in the guards and effects, i.e., data
state and transition predicates, by syntactical translations as well as in the interpretation
domains by semantical reducts.

A data signature morphism from a data signature A to a data signature A′ is a
function α : A → A′. The α-reduct of an A′-data state ω′ : A′ → D along a data
signature morphism α : A → A′ is given by the A-data state ω′|α : A → D with
(ω′|α)(a) = ω′(α(a)) for every a ∈ A; the α-reduct of an A′-data transition (ω′, ω′′)
by the A-data transition (ω′, ω′′)|α = (ω′|α, ω′′|α). The state predicate translation
FDα,X : FDA,X → FDA′,X along a data signature morphism α : A→ A′ is given by the
Casl-formula translation F Casl

Sig(Dt),α∪1X
along the substitution α ∪ 1X ; the transition

predicate translation F 2D
α,X by FD2α,X with 2α : 2A → 2A′ defined by 2α(a) = α(a)

and 2α(a′) = α(a)′. For each of these two reduct-translation-pairs the satisfaction
condition holds due to the general substitution lemma for Casl:

ω′|α, β |=DA,X φ ⇐⇒ ω′, β |=DA′,X FDα,X(φ)

(ω′, ω′′)|α, β |=2D
A,X ψ ⇐⇒ (ω′, ω′′), β |=2D

A′,X F 2D
α,X(ψ)

An event signature morphism η : E → E′ is a function η : |E| → |E′| such that
υ(E)(e) = υ(E′)(η(e)) for all e ∈ |E|. An event/data signature morphism σ : Σ → Σ′

consists of an event signature morphism E(σ) : E(Σ)→ E(Σ′) and a data signature
morphism A(σ) : A(Σ)→ A(Σ′). The σ-reduct of a Σ′-event/data structureM ′ along
σ is the Σ-event/data structureM ′|σ such that

– Γ (M ′|σ) ⊆ Γ (M ′) as well as R(M ′|σ) = (R(M ′|σ)e(β))e(X)∈E(Σ),β : X→D are
inductively defined by Γ (M ′|σ) ⊇ Γ0(M ′) and, for all γ′, γ′′ ∈ Γ (M ′), e(X) ∈
E(Σ), and β : X → D, if γ′ ∈ Γ (M ′|σ) and (γ′, γ′′) ∈ R(M ′)E(σ)(e)(β), then
γ′′ ∈ Γ (M ′|σ) and (γ′, γ′′) ∈ R(M ′|σ)e(β);

– Γ0(M ′|σ) = Γ0(M ′); and
– ω(M ′|σ)(γ′) = (ω(M ′)(γ′))|σ for all γ′ ∈ Γ (M ′|σ).

Building a reduct of an event/data-structure does not affect the single configurations,
but potentially reduces the set of configurations by restricting the available events, and
the data state observable from the data name of a configuration. We denote by ΓF (M,γ)
and ΓF (M), respectively, the set of configurations of a Σ-event/data structureM that
are F -reachable from a configuration γ ∈ Γ (M) and from an initial configuration
γ0 ∈ Γ0(M), respectively, with a set of events F ⊆ E(Σ) where a γn ∈ Γ (M) is
F -reachable in M from a γ1 ∈ Γ (M) if there are n ≥ 1, e2(X2), . . . , en(Xn) ∈ F ,
β2 : X2 → D, . . . , βn : Xn → D, and (γi, γi+1) ∈ R(M)ei+1(βi+1) for all 1 ≤ i < n.

Although it is straightforward to define a translation of simple UML state machines
along an event/data signature morphism, the rather restrictive notion of their models
prevents the satisfaction condition to hold. In fact, this is already true for our previous
endeavours to institutionalise UML state machines [10,8]. There machines themselves

8

were taken to be sentences over signatures comprising both events and states, and
the satisfaction relation also required that a model shows exactly the transitions of
such a machine sentence. For signature morphisms σ that are not surjective on states,
building the reduct could result in less states and transitions, which leads to the following
counterexample to the satisfaction condition [19]:

s
s1 s2

e/
{
|= s1 s2

e/

7→ |σ
7→

σ

u

wwww
v

σ(s1) σ(s2)

s ′

e/

e/

}

����
~
6|= σ(s1) σ(s2)

e/

We therefore propose to make a detour through a more general hybrid modal logic.
This logic is directly based on event/data structures and thus close to the domain of state
machines. For forming an institution, its hybrid features allow to avoid control states as
part of the signature and its event-based modalities allow to specify both mandatory and
forbidden behaviour in a more fine-grained manner. Still, the logic is expressive enough
to characterise the model class of a simple UML state machine syntactically.

4 A Hybrid Modal Logic for Event/Data Systems

The logicM↓D is a hybrid modal logic for specifying event/data-based reactive systems
and reasoning about them. TheM↓D-signatures are the event/data signatures, theM

↓
D-

structures the event/data structures. Themodal part of the logic allows to handle transitions
between configurations where the modalities describe moves between configurations that
adhere to a pre-condition or guard as a state predicate for an event with arguments and a
transition predicate for the data change corresponding to effects. The hybrid part of the
logic allows to bind control states of system configurations and to jump to configurations
with such control states explicitly, but leaves out nominals as interfacing names as well
as the possibility to quantify over control states. The logic builds on the hybrid dynamic
logic D↓ for specifying reactive systems without data [13] and its extension E↓ to handle
also data [6]. We restrict ourselves to modal operators consisting only of single instead
of compound actions as done in dynamic logic. However, we still retain a box modality
for accessing all configurations that are reachable from a given configuration. Moreover,
we extend E↓ by adding parameters to events.

The category ofM↓D-signatures SM
↓
D consists of the event/data signatures and

signature morphisms. TheΣ-event/data structures form the discrete category StrM
↓
D (Σ)

ofM↓D-structures overΣ. For each signaturemorphismσ : Σ → Σ′ inSM
↓
D theσ-reduct

functor StrM
↓
D (σ) : StrM

↓
D (Σ′)→ StrM

↓
D (Σ) is given by StrM

↓
D (σ)(M ′) = M ′|σ.

As the next step we introduce the formulæ and sentences ofM↓D together with their

9

translation along SM
↓
D -morphisms and their satisfaction over StrM

↓
D . We then show

that forM↓D the satisfaction condition holds and thus obtainM↓D as an institution.
Subsequently, we show thatM↓D is simultaneously expressive enough to characterise the
model class of simple UML state machines.

4.1 Formulæ and Sentences of M↓
D

M↓D-formulæ aim at expressing control and data state properties of configurations as
well as accessibility properties of configurations along transitions for particular events.
The pure data state part is captured by data state sentences over D. The control state
part can be accessed and manipulated by hybrid operators for binding the control state
in a state variable, ↓s; checking for a particular control state, s; and accessing all
configurations with a particular control state, @F , which, however, only pertains to
reachable configurations relative to a set F of events. Transitions between configurations
are covered by different modalities: a box modality for accessing all configurations that
are reachable from a given configuration, 2F , again relative to a set F of events; a
diamond modality for checking that an event with arguments is possible with a particular
data state change, 〈e(X)(ψ〉; and a modality for checking the reaction to an event with
arguments according to a pre-condition and a transition predicate, 〈|e(X) : φ(ψ|〉.

Formally, the Σ-event/data formulæ F
M↓D
Σ,S over an event/data signature Σ and a set

of state variables S are inductively defined by

– ϕ— data state sentence ϕ ∈ FDA(Σ),∅ holds in the current configuration;
– s— the control state of the current configuration is s ∈ S;
– ↓s . %— calling the current control state s, formula % ∈ F

M↓D
Σ,S]{s} holds;

– (@F s)%— in all configurations with control state s ∈ S that are reachable with events
from F ⊆ E(Σ) formula % ∈ F

M↓D
Σ,S holds;

– 2F %— in all configurations that are reachable from the current configuration with
events from F ⊆ E(Σ) formula % ∈ F

M↓D
Σ,S holds;

– 〈e(X)(ψ〉%— in the current configuration there is a valuation of X and a transition
for event e(X) ∈ E(Σ) with these arguments that satisfies transition formula ψ ∈
F 2D
A(Σ),X and makes % ∈ F

M↓D
Σ,S hold afterwards;

– 〈|e(X) : φ(ψ|〉% — in the current configuration for all valuations of X satisfying
state formula φ ∈ FDA(Σ),X there is a transition for event e(X) ∈ E(Σ) with these

arguments that satisfies transition formula ψ ∈ F 2D
A(Σ),X and makes % ∈ F

M↓D
Σ,S hold

afterwards;
– ¬%— in the current configuration % ∈ F

M↓D
Σ,S does not hold;

– %1 ∨ %2 — in the current configuration %1 ∈ F
M↓D
Σ,S or %2 ∈ F

M↓D
Σ,S hold.

We write (@s)% for (@E(Σ)s)%, 2% for 2E(Σ)%, 3F % for ¬2F¬%, 3% for 3E(Σ)%,
[e(X)(ψ]% for ¬〈e(X)(ψ〉¬%, and true for ↓s . s.

10

Example 8. An event/data formula can make two kinds of requirements on an event/data
structure: On the one hand, it can require the presence of certain mandatory transitions,
on the other hand it can require the absence of certain prohibited transitions. Considering
the simple UML state machine in Fig. 2, the formula

(@s1)〈|inc(x) : cnt + x = 4(cnt′ = 4|〉s2

requires for each valuation of β : {x} → N such that cnt + x = 4 holds that there is a
transition from control state s1 to control state s2 for the instantiated event inc(β) where
cnt is changed to 4. On the other hand, the formula

(@s2)[reset(¬(cnt′ = 0)]false

prohibits any transitions out of s2 that are labelled with the event reset but do not satisfy
cnt′ = 0.

In the context of Fig. 2, these formulæ only have their explained intended meaning
when s1 and s2 indeed refer to the eponymous states. However,M↓D does not show
nominals for explicitly naming control states as part of the state machine’s interface
and the reference to specific states always has to build these states’ context first using
the modalities and the bind operator. On the other hand, as indicated in Sect. 3.4, the
inclusion of nominals may interfere disadvantageously with the reduct formation.

Let σ : Σ → Σ′ be an event/data signature morphism. The event/data formulæ
translation F

M↓D
σ,S : F

M↓D
Σ,S → F

M↓D
Σ′,S along σ is recursively given by

– F
M↓D
σ,S (ϕ) = FDA(σ),∅(ϕ);

– F
M↓D
σ,S (s) = s;

– F
M↓D
σ,S (↓s . %) = ↓s .FM

↓
D

σ,S]{s}(%);

– F
M↓D
σ,S ((@F s)%) = (@E(σ)(F)s)F

M↓D
σ,S (%);

– F
M↓D
σ,S (2F %) = 2E(σ)(F)F

M↓D
σ,S (%);

– F
M↓D
σ,S (〈e(X)(ψ〉%) = 〈E(σ)(e)(X)(F 2D

A(σ),X(ψ)〉FM
↓
D

σ,S (%);

– F
M↓D
σ,S (〈|e(X) : φ(ψ|〉%) = 〈|E(σ)(e)(X) : FDA(σ),X(φ)(F 2D

A(σ),X(ψ)|〉FM
↓
D

σ,S (%);

– F
M↓D
σ,S (¬%) = ¬F

M↓D
σ,S (%);

– F
M↓D
σ,S (%1 ∨ %2) = F

M↓D
σ,S (%1) ∨F

M↓D
σ,S (%2).

The set SenM
↓
D (Σ) of Σ-event/data sentences is given by F

M↓D
Σ,∅ , the event/data

sentence translation SenM
↓
D (σ) : SenM

↓
D (Σ)→ SenM

↓
D (Σ′) by F

M↓D
σ,∅ .

4.2 Satisfaction Relation for M↓
D

TheM↓D-satisfaction relation connectsM
↓
D-structures andM

↓
D-formulæ, expressing

whether in some configuration of the structure a particular formula holds with respect to

11

an assignment of control states to state variables. LetΣ be an event/data signature,M aΣ-
event/data structure, S a set of state variables, v : S → C(M) a state variable assignment,
and γ ∈ Γ (M). The satisfaction relation for event/data formulæ is inductively given by

– M,v, γ |=M
↓
D

Σ,S ϕ iff ω(M)(γ) |=DA(Σ) ϕ;

– M,v, γ |=M
↓
D

Σ,S s iff v(s) = c(M)(γ);

– M,v, γ |=M
↓
D

Σ,S ↓s . % iffM,v{s 7→ c(M)(γ)}, γ |=M
↓
D

Σ,S]{s} %;

– M,v, γ |=M
↓
D

Σ,S (@F s)% iffM,v, γ′ |=M
↓
D

Σ,S %

for all γ′ ∈ ΓF (M) with c(M)(γ′) = v(s);

– M,v, γ |=M
↓
D

Σ,S 2F % iffM,v, γ′ |=M
↓
D

Σ,S % for all γ′ ∈ ΓF (M,γ);

– M,v, γ |=M
↓
D

Σ,S 〈e(X)(ψ〉% iff there is a β : X → D and a γ′ ∈ Γ (M) such that

(γ, γ′) ∈ R(M)e(β), (ω(M)(γ), ω(M)(γ′)), β |=2D
A(Σ),X ψ, andM,v, γ′ |=M

↓
D

Σ,S %;

– M,v, γ |=M
↓
D

Σ,S 〈|e(X) : φ(ψ|〉% iff for all β : X → D with ω(M)(γ), β |=DA(Σ),X φ

there is some γ′ ∈ Γ (M) such that (γ, γ′) ∈ R(M)e(β),

(ω(M)(γ), ω(M)(γ′)), β |=2D
A(Σ),X ψ, andM, v, γ′ |=M

↓
D

Σ,S %;

– M,v, γ |=M
↓
D

Σ,S ¬% iffM, v, γ 6|=M
↓
D

Σ,S %;

– M,v, γ |=M
↓
D

Σ,S %1 ∨ %2 iffM, v, γ |=M
↓
D

Σ,S %1 orM,v, γ |=M
↓
D

Σ,S %2.

This satisfaction relation is well-behaved with respect to reducts ofM↓D-structures.
On the one hand, this is due to the use of abstract data names rather than data states in
the structures, and on the other hand to the satisfaction condition of D and 2D.

Lemma 1. Let σ : Σ → Σ′ be a event/data signature morphism andM ′ aΣ′-event/data
structure. For all % ∈ F

M↓D
Σ,S , all γ′ ∈ Γ (M ′|σ) ⊆ Γ (M ′), and all v : S → C(M ′|σ) ⊆

C(M ′) it holds that

M ′|σ, v, γ′ |=M
↓
D

Σ,S % ⇐⇒ M ′, v, γ′ |=M
↓
D

Σ′,S F
M↓D
σ,S (%) .

For a Σ ∈ |SM
↓
D |, an M ∈ |StrM

↓
D (Σ)|, and a ρ ∈ SenM

↓
D (Σ) the satisfaction

relationM |=M
↓
D

Σ ρ holds if, and only if,M, ∅, γ0 |=
M↓D
Σ,∅ ρ for all γ0 ∈ Γ0(M).

Theorem 1. (SM
↓
D ,StrM

↓
D ,SenM

↓
D , |=M

↓
D) is an institution.

4.3 Representing Simple UML State Machines in M↓
D

The hybrid modal logicM↓D is expressive enough to characterise the model class of a
simple UML state machine U by a single sentence %U , i.e., an event/data structureM
is a model of U if, and only if,M |=M

↓
D

Σ(U) %U . Such a characterisation is achieved by

12

Alg. 1 Constructing anM↓D-sentence from a set of transition specifications
Require: T ≡ a set of transition specifications

ImT (c) = {(φ, e(X), ψ, c′) | (c, φ, e(X), ψ, c′) ∈ T}
ImT (c, e(X)) = {(φ, ψ, c′) | (c, ϕ, e(X), ψ, c′) ∈ T}

1 function sen(c, I, V,B) . c: state, I: image to visit, V : states to visit, B: bound states
2 if I 6= ∅ then
3 (φ, e(X), ψ, c′)← choose I
4 if c′ ∈ B then
5 return (@c)〈|e(X) : φ(ψ|〉(c′ ∧ sen(c, I \ {(φ, e(X), ψ, c′)}, V, B))
6 else
7 return (@c)〈|e(X) : φ(ψ|〉(↓c′ . sen(c, I \ {(φ, e(X), ψ, c′)}, V, B ∪ {c′}))
8 V ← V \ {c}
9 if V 6= ∅ then

10 c′ ← choose B ∩ V
11 return sen(c′, ImT (c′), V, B)

12 return (
∧
c∈B fin(c)) ∧

∧
c1∈B,c2∈B\{c1} ¬(@c1)c2

13 function fin(c)
14 return (@c)

∧
e(X)∈E(Σ(U))

∧
P⊆ImT (c,e(X))

[e(X)(
(∧

(φ,ψ,c′)∈P (φ ∧ ψ)
)
∧

¬
(∨

(φ,ψ,c′)∈ImT (c,e(X))\P (φ ∧ ψ)
)
]
(∨

(φ,ψ,c′)∈P c
′)

means of Alg. 1 that is a slight variation of the characterisation algorithm for so-called
operational specifications within E↓ [6] by including also events with data arguments.
The algorithm constructs a sentence expressing that semantic transitions according to
explicit syntactic transition specifications are indeed possible and that no other semantic
transitions not adhering to any of the syntactic transition specifications exist. For a set
of transition specifications T , a call sen(c, I, V,B) performs a recursive breadth-first
traversal starting from c, where I holds the unprocessed quadruples (φ, e(X), ψ, c′) of
transitions in T outgoing from c, V the remaining states to visit, and B the set of already
bound states. The function first requires the existence of each outgoing transition of I in
the resulting formula, binding any newly reached state. Having visited all states in V , it
requires that no other transitions from the states in B exist using calls to fin, and adds
the requirement that all states in B are pairwise different. Formula fin(c) expresses that
at c, for all events e(X) and for all subsets P of the transitions in T outgoing from c,
whenever an e(X)-transition can be done with the combined effect of P but not adhering
to any of the effects of the currently not selected transitions, the e(X)-transition must
have one of the states as its target that are target states of P .

Example 9. Applying Alg. 1 to the set of explicitly mentioned, “black” transition
specifications T of the simple UML state machineCounter in Fig. 2, i.e., calling sen(s1 ,
ImT (s1), {s1 , s2}, {s1}) yields %s1 ,s1 with

%s1 ,s1 = (@s1)〈|inc(x) : cnt + x ≤ 4(cnt′ = cnt + x|〉(s1 ∧ %s1 ,s2)

%s1 ,s2 = (@s1)〈|inc(x) : cnt + x = 4(cnt′ = cnt + x|〉↓s2 . (%s2 ,s1)

%s2 ,s1 = (@s2)〈|reset : true(cnt′ = 0|〉(s1 ∧ %fin)

13

%fin = %fin(s1) ∧ %fin(s2) ∧ ¬(@s1)s2

%fin(s1) = (@s1)
(
[inc(x)(¬((cnt + x ≤ 4 ∧ cnt′ = cnt + x) ∨

(cnt + x = 4 ∧ cnt′ = 4))]false ∧
[inc(x)((cnt + x ≤ 4 ∧ cnt′ = cnt + x) ∧

¬(cnt + x = 4 ∧ cnt′ = 4)]s1 ∧
[inc(x)((cnt + x = 4 ∧ cnt′ = 4) ∧

¬(cnt + x ≤ 4 ∧ cnt′ = cnt + x)]s2 ∧
[inc(x)((cnt + x ≤ 4 ∧ cnt′ = cnt + x) ∧

(cnt + x = 4 ∧ cnt′ = 4)](s1 ∨ s2) ∧
[reset(true]false

)
%fin(s2) = (@s2)

(
[inc(x)(true]false ∧
[reset(¬(cnt′ = 0)]false ∧
[reset(cnt′ = 0]s1

)
In fact, there is no outgoing “black” transition for reset from s1 , thus P = ∅ is

the only choice for this event in fin(s1) and the clause [reset(true]false is included.
For inc(x) there are two outgoing transitions resulting four different clauses checking
whether none, the one or the other, or both transitions are executable.

In order to apply the algorithm to simple UML state machines, the idling self-
loops for achieving input-enabledness first have to be made explicit. For a syntactically
input-enabled simple UML state machine U a characterising sentence then reads

%U = ↓c0 . ϕ0 ∧ sen(c0, ImT (U)(c0), C(U), {c0}) ,

where c0 = c0(U) and ϕ0 = ϕ0(U). Due to syntactic reachability, the bound states B of
Alg. 1 become C(U) when sen is called for B = {c0(U)} and V reaches ∅.

5 A Theoroidal Comorphism fromM↓
D to Casl

We define a theoroidal comorphism fromM↓D to Casl. The construction mainly follows
the standard translation of modal logics to first-order logic [2] which has been considered
for hybrid logics also on an institutional level [12,3].

The basis is a representation ofM↓D-signatures and the frame given byM↓D-structures
as a Casl-specification as shown in Fig. 3. The signature translation

νS : SM
↓
D → PresCasl

maps a M↓D-signature Σ to the Casl-theory presentation given by TransΣ and a
M↓D-signature morphism to the corresponding theory presentation morphism. TransΣ
first of all covers the events and event names according to E(Σ) (types Evt and EvtNm
with several alternatives separated by “|”) and the configurations (type Conf with a
single constructor “conf”) with their control states (sort Ctrl) and data states given
by assignments to the attributes from A(Σ) (separated by “;”). The remainder of
TransΣ sets the frame for describing reachable transition systems with a set of initial

14

from Basic/StructuredDatatypes get Set % import finite sets
spec TransΣ = Dt
then free type Evt ::= τe(E(Σ))

% τe({e(X)}) = e(dt |X|), τe({e(X)} ∪ E) = e(dt |X|) | τe(E)
free type EvtNm ::= τn(E(Σ)) % τn({e(X)}) = e, τn({e(X)} ∪ E) = e | τn(E)
op nm : Evt→ EvtNm
axiom ∀x1, . . . , xn : dt · nm(e(x1, . . . , xn)) = e % for each e(x1, . . . , xn) ∈ E(Σ)

then Set[sort EvtNm]
then sort Ctrl

free type Conf ::= conf(c : Ctrl; τa(A(Σ)))
% τa({a}) = a : dt , τa({a} ∪A) = a : dt ; τa(A)

preds init : Conf;
trans : Conf × Evt× Conf

·∃g : Conf · init(g) % there is some initial configuration
·∀g, g′ : Conf · init(g) ∧ init(g′)⇒ c(g) = c(g′) % single initial control state
free { pred reachable : Set [EvtNm]× Conf × Conf

∀g, g′, g′′ : Conf, E : Set [EvtNm], e : Evt
· reachable(E, g, g)
· reachable(E, g, g′) ∧ nm(e) ∈ E ∧ trans(g′, e, g′′)⇒ reachable(E, g, g′′) }

then preds reachable(E : Set [EvtName], g : Conf)⇔
∃g0 : Conf · init(g0) ∧ reachable(E, g0, g);

reachable(g : Conf)⇔ reachable(E(Σ), g)
end

Fig. 3. Frame for translatingM↓D into Casl

configurations (predicate init), a transition relation (predicate trans) and reachability
predicates. The specification of the predicate reachable uses Casl’s “structured free”
construct to ensure reachability to be inductively defined. The model translation

νMod
Σ : ModCasl(νS(Σ))→ StrM

↓
D (Σ)

then can rely on this encoding. In particular, for amodelM ′ ∈ ModCasl(νS(Σ)), there are,
using the bijection ιM ′,dt : dtM

′ ∼= D, an injective map ιM ′,Conf : ConfM
′
� CtrlM

′
×

Ω(A(Σ)) and a bijective map ιM ′,Evt : EvtM
′ ∼= {e(β) | e(X) ∈ E(Σ), β : X → D}.

TheM↓D-structure resulting from a Casl-model of TransΣ can thus be defined by

– Γ (νMod
Σ (M ′)) = ι−1

M ′,Conf({g′ ∈M ′Conf | reachableM
′
(g′)})

– R(νMod
Σ (M ′))e(β) = {(γ, γ′) ∈ Γ (νMod

Σ (M ′))× Γ (νMod
Σ (M ′)) |

transM
′
(ιM ′,Conf(γ), ι−1

M ′,Evt(e(β)), ιM ′,Conf(γ
′))})

– Γ0(νMod
Σ (M ′)) = {γ ∈ Γ (νMod

Σ (M ′)) | initM
′
(ιM ′,Conf(γ))})

– ω(νMod
Σ (M ′)) = {(c, ω) ∈ Γ (νMod

Σ (M ′)) 7→ ω}

ForM↓D-sentences, we first define a formula translation

νF
Σ,S,g : F

M↓D
Σ,S → F Casl

νSig(Σ),S∪{g}

15

which, mimicking the standard translation, takes a variable g : Conf as a parameter
that records the “current configuration” and also uses a set S of state names for the
control states. The translation embeds the data state and 2-data state formulæ using the
substitution A(Σ)(g) = {a 7→ a(g) | a ∈ A(Σ)} for replacing the attributes a ∈ A(Σ)

by the accessors a(g). The translation ofM↓D-formulæ then reads

– νF
Σ,S,g(ϕ) = F Casl

νSig(Σ),A(Σ)(g)(ϕ)

– νF
Σ,S,g(s) = (s = c(g))

– νF
Σ,S,g(↓s . %) = ∃s : Ctrl . s = c(g) ∧ νF

Σ,S]{s},g(%)

– νF
Σ,S,g((@

F s)%) = ∀g′ : Conf . (c(g′) = s ∧ reachable(F, g′))⇒ νF
Σ,S,g′(%)

– νF
Σ,S,g(2

F %) = ∀g′ : Conf . reachable(F, g, g′)⇒ νF
Σ,S,g′(%)

– νF
Σ,S,g(〈e(X)(ψ〉%) = ∃X : dt .∃g′ : Conf . trans(g, e(X), g′) ∧

F Casl
νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X

(ψ) ∧ νF
Σ,S,g′(%)

– νF
Σ,S,g(〈|e(X) : φ(ψ|〉%) = ∀X : dt .F Casl

νSig(Σ),A(Σ)(g)∪1X
(φ)⇒

∃g′ : Conf . trans(g, e(X), g′) ∧
F Casl
νSig(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X

(ψ) ∧ νF
Σ,S,g′(%)

– νF
Σ,S,g(¬%) = ¬νF

Σ,S,g(%)

– νF
Σ,S,g(%1 ∨ %2) = νF

Σ,S,g(%1) ∨ νF
Σ,S,g(%2)

Example 10. The translation of (@s1)〈|inc(x) : cnt + x ≤ 4(cnt′ = cnt + x|〉s1 over
the state set {s1} and the configuration variable g is

νF
Σ,{s1},g((@s1)〈|inc(x) : cnt + x ≤ 4(cnt′ = cnt + x|〉s1)

= ∀g′ : Conf . (c(g′) = s1 ∧ reachable(g′))⇒
νF
Σ,{s1},g′(〈|inc(x) : cnt + x ≤ 4(cnt′ = cnt + x|〉s1)

= ∀g′ : Conf . (c(g′) = s1 ∧ reachable(g′))⇒
∀x : dt . cnt(g′) + x ≤ 4⇒
∃g′′ : Conf . trans(g′, inc(x), g′′) ∧

cnt(g′′) = cnt(g′) + x ∧ νF
Σ,{s1},g′′(s1)

= ∀g′ : Conf . (c(g′) = s1 ∧ reachable(g′))⇒
∀x : dt . cnt(g′) + x ≤ 4⇒
∃g′′ : Conf . trans(g′, inc(x), g′′) ∧

cnt(g′′) = cnt(g′) + x ∧ s1 = c(g′′)

Building on the translation of formulæ, the sentence translation

νSen
Σ : SenM

↓
D (Σ)→ SenCasl(νSig(Σ))

only has to require additionally that evaluation starts in an initial state:

– νSen
Σ (ρ) = ∀g : Conf . init(g)⇒ νF

Σ,∅,g(ρ)

The translation of Casl-models of TransΣ intoM↓D-structures and the translation
ofM↓D-formulæ into Casl-formulæ over TransΣ fulfil the requirements of the “open”
satisfaction condition of theoroidal comorphisms:

16

logic UMLState
spec Counter =
var cnt;
event inc(x);
event reset;
states s1, s2;
init s1 : cnt = 0;
trans s1 --> s1 : inc(x) [cnt + x < 4] / { cnt := cnt + x };
trans s1 --> s2 : inc(x) [cnt + x = 4] / { cnt := cnt + x };
trans s2 --> s1 : reset [cnt = 4] / { cnt := 0 };

end

Lst. 1. Representation of the simple UML state machine Counter in UMLState

Lemma 2. For a % ∈ F
M↓D
Σ,S , an M ′ ∈ ModCasl(νS(Σ)), a v : S → C(νMod

Σ (M ′)),
and a γ ∈ Γ (νMod

Σ (M ′)) it holds with β′M ′,g(v, γ) = ι−1
M ′,Ctrl ◦ v∪{g 7→ ιM ′,Conf(γ)}

that

νMod
Σ (M ′), v, γ |=M

↓
D

Σ,S % ⇐⇒ M ′, β′M ′,g(v, γ) |=Casl
νSig(Σ),S∪{g} ν

F
Σ,S,g(%) .

Theorem 2. (νS, νMod, νSen) is a theoroidal comorphism fromM↓D to Casl.

6 Proving Properties of UML State Machines with HeTS and Spass

We implemented the translation of simple UML state machines into Casl specifications
within the heterogeneous toolset HeTS [15]. Based on this translation we explain how
to prove properties symbolically in the automated theorem prover Spass [20] for our
running example of a counter.

6.1 Implementation in HeTS

For a HeTS chain from simple UML state machine to Casl and Spass, we first defined
the input language UMLState and extended HeTS with a parser for this language.
The syntax of UMLState closely follows the ideas of PlantUML [18], such that, in
particular, its textual specifications can potentially be rendered graphically as UML
state machines. Listing 1 gives a representation of our running example Counter , cf.
Sect. 3, in UMLState. Note that UMLState uses more conventional UML syntax
for effects on transitions, e.g., “cnt := cnt + x”. Next, we extended HeTS with a
syntax representation of our logicM↓D, cf. Sect. 4, and implemented Alg. 1 in HeTS
to automatically translate UMLState specifications intoM↓D specifications, where we
arrive at the institutional level. In this step, effects on transitions are turned into logical
formulæ, like “cnt′ = cnt + x”. Finally, we extended HeTS with an implementation of
the comorphism fromM↓D into Casl, cf. Sect. 5. The implementation has been bundled
in a fork of HeTS (https://github.com/spechub/hets) and provides a translation
chain from UMLState via Casl to the input languages of various proof tools, such as
the automated theorem prover Spass.

17

https://github.com/spechub/hets

spec Counter = Trans
then pred invar(g : Conf)⇔ (c(g) = s1 ∧ cnt(g) ≤ 4) ∨ (c(g) = s2 ∧ cnt(g) ≤ 4)

%% induction scheme for “reachable” predicate, instantiated for “invar”:
· ((∀ g : Conf · init(g)⇒ invar(g))
∧ ∀ g, g’ : Conf ; e : Evt
· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’)⇒ invar(g’))

⇒ ∀ g : Conf · reachable(g)⇒ invar(g)
then . . . machine axioms . . .
then %implies

%% the safety assertion for our counter:
∀ g : Conf · reachable(g)⇒ cnt(g) ≤ 4 %(Safe)%
%% steering Spass with case distinction lemmas, could be generated algorithmically:
∀ g, g’ : Conf ; e : Evt; k : Nat
· init(g)⇒ invar(g) %(InvarInit)%
· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’) ∧ e = reset
⇒ invar(g’) %(InvarReset)%

· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’) ∧ e = inc(k)
⇒ invar(g’) %(InvarInc)%

· (reachable(g)⇒ invar(g)) ∧ reachable(g) ∧ trans(g, e, g’)
⇒ invar(g’) %(InvarStep)%

· invar(g)⇒ cnt(g) ≤ 4 %(InvarImpliesSafe)%

Fig. 4. Casl specification of our running example

6.2 Proving in Spass

Figure 4 shows the Casl specification representing the state machine from Fig. 2,
extended by a proof obligation%(Safe)% and proof infrastructure for it. We want to prove
the safety property that cnt never exceeds 4 using the automated theorem prover Spass.

The Casl specification Counter imports a specification Trans which instantiates
the generic frame translating M↓D into Casl, cf. Fig. 3. However, the first-order
theorem prover Spass does not support Casl’s structured free that we use for expressing
reachability. For invariance properties this deficiency can be circumvented by loosely
specifying reachable (i.e., omitting the keyword free), introducing a predicate invar,
and adding a first-order induction axiom. This means that we have to establish the safety
property for a larger model class than we would have with freeness. When carrying
out symbolic reasoning for invariant referring to a single configuration, the presented
induction axiom suffices. Other properties would require more involved induction axioms,
e.g., referring to several configurations.

Then the specification provides the machine axioms as stated (partially) in Ex. 9. The
axioms following the%implies directive are treated as proof obligations. We first state
the safety property that we wish to establish: in all reachable configurations, the counter
value is less or equal 4 – %(Safe)%. The remainder steers the proving process in Spass
by providing suitable case distinctions. For invariants referring to a single configuration,
these could also be generated automatically based on the transition structure of the state
machine.

18

As proof of concept, we automatically verified this safety property in Spass. In this
experiment, we performed some optimising, semantics-preserving logical transformations
on the result of applying the comorphism, to make the specification more digestible
to the theorem prover. These transformations include the removal of double negations,
splitting a conjunction into separate axioms, and turning existentially quantified control
states into constants by Skolemisation.

7 Conclusions and Future Work

We have described a new, institution-based logical frameworkM↓D that captures simple
UML state machines. This is in contrast to previous approaches that modelled UML
parts directly as an institution and ran into difficulties in establishing the satisfaction
condition [19]. By (1) defining an institution-based translation fromM↓D into the Casl
institution and (2) implementing and thus automatising our translation within HeTS,
we made it possible to analyse UML state machines with the broad range of provers
accessible via HeTS.

The resulting tool chain allows us to apply an automatic prover (as demonstrated
here using the theorem prover Spass), or several automatic provers, where they work and
switch to interactive tools like Isabelle where necessary (not needed in the analysis of our
example Counter). Not only does this switch require no manual reformulation into the
interactive tool’s input language, rather, it can be done even within one development: We
could possibly show some lemmas via automatic first-order provers, some lemmas via
domain-specific tools, then use those to prove a difficult lemma in an interactive prover,
then apply all those lemmas to automatically prove the final theorem. HeTS allows us to
use the best language and the best tool for each job, and takes care of linking the results
together under the hood.

It is future work to extendM↓D to cover more elements of UML state machines, such
as hierarchical states and communication networks. The main challenge here will be to
enrichM↓D in such a way that it offers suitable logical representations for the additional
structural elements (hierarchical states or communication networks) rather than to flatten
these: We anticipate symbolic reasoning on UML state machines to be “easier” if their
structural elements are still “visible” in their Casl representations.

In the long term, we work towards heterogeneous verification of different UML dia-
grams. One possible setting would be to utilise interactions as a specification mechanism,
where communicating state machines model implementations.

References

1. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive Verification of UML
State Machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) Proc. 6th Intl. Conf. Formal
Engineering Methods (ICFEM 2004). Lect. Notes Comp. Sci., vol. 3308 (2004)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical
Computer Science, vol. 53. Cambridge University Press (2001)

3. Diaconescu, R., Madeira, A.: Encoding Hybridized Institutions into First-order Logic. Math.
Struct. Comp. Sci. 26(5), 745–788 (2016)

19

4. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and
Programming. J. ACM 39, 95–146 (1992)

5. Grönniger, H.: Systemmodell-basierte Definition objektbasierter Modellierungssprachen mit
semantischen Variationspunkten. Ph.D. thesis, RWTH Aachen (2010)

6. Hennicker, R., Madeira, A., Knapp, A.: A Hybrid Dynamic Logic for Event/Data-Based
Systems. In: Hähnle, R., van der Aalst, W.M.P. (eds.) Proc. 22nd Intl. Conf. Fundamental
Approaches to Software Engineering. Lect. Notes Comp. Sci., vol. 11424, pp. 79–97. Springer
(2019)

7. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing Domain Specific
Languages — A Craftsman’s Approach for the Railway Domain Using Casl. In: Martí-
Oliet, N., Palomino, M. (eds.) Rev. Sel. Papers 21st Intl. Ws. Recent Trends in Algebraic
Development Techniques (WADT 2012). Lect. Notes Comp. Sci., vol. 7841, pp. 178–194.
Springer (2012)

8. Knapp, A., Mossakowski, T.: UML Interactions Meet State Machines — An Institutional
Approach. In: Bonchi, F., König, B. (eds.) Proc. 7th Intl. Conf. Algebra and Coalgebra in
Computer Science (CALCO 2017). LIPIcs, vol. 72, pp. 15:1–15:15 (2017)

9. Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an Institutional Framework for
Heterogeneous Formal Development in UML — A Position Paper. In: De Nicola, R.,
Hennicker, R. (eds.) Software, Services, and Systems — Essays Dedicated to Martin Wirsing
on the Occasion of His Retirement from the Chair of Programming and Software Engineering,
Lect. Notes Comp. Sci., vol. 8950, pp. 215–230. Springer (2015)

10. Knapp, A.,Mossakowski, T., Roggenbach,M., Glauer,M.: An Institution for Simple UMLState
Machines. In: Egyed, A., Schaefer, I. (eds.) Proc. 18th Intl. Conf. Fundamental Approaches to
Software Engineering (FASE 2015). Lect. Notes Comp. Sci., vol. 9033, pp. 3–18. Springer
(2015)

11. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M., Arons, T.,
Kugler, H.: Formalizing UML Models and OCL Constraints in PVS. In: Lüttgen, G., Mendler,
M. (eds.) Proc. Ws. Semantic Foundations of Engineering Design Languages (SFEDL 2004).
Electr. Notes Theo. Comp. Sci., vol. 115 (2005)

12. Madeira, A.: Foundations and Techniques for Software Reconfigurability. Ph.D. thesis,
Universidade do Minho (2013)

13. Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: Dynamic Logic with Binders and
Its Application to the Development of Reactive Systems. In: Proc. 13th Intl. Coll. Theoretical
Aspects of Computing. Lect. Notes Comp. Sci., vol. 9965, pp. 422–440. Springer (2016)

14. Mossakowski, T.: Relating CASL with Other Specification Languages: The Institution Level.
Theo. Comp. Sci. 286(2), 367–475 (2002)

15. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O.,
Huth, M. (eds.) Proc. 13th Intl. Conf. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2007). Lect. Notes Comp. Sci., vol. 4424, pp. 519–522. Springer (2007)

16. Mosses, P.D.: CASL Reference Manual — The Complete Documentation of the Common
Algebraic Specification Language, Lect. Notes Comp. Sci., vol. 2960. Springer (2004)

17. Object Management Group: Unified Modeling Language. Standard formal/17-12-05, OMG
(2017), http://www.omg.org/spec/UML/2.5.1

18. Roques, A.: PlantUML. https://plantuml.com/ (Accessed 2020-02-11)
19. Rosenberger, T.: Relating UML State Machines and Interactions in an Institutional Framework.

Master’s thesis, Elite Graduate Program Software Engineering (Universität Augsburg, Ludwig-
Maximilians-Universität München, Technische Universität München) (2017)

20. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS
Version 3.5. In: Schmidt, R.A. (ed.) Proc. 22nd Intl. Conf. Automated Deduction. Lect. Notes
Comp. Sci., vol. 5663, pp. 140–145. Springer (2009)

20

http://www.omg.org/spec/UML/2.5.1
https://plantuml.com/

	Institution-based Encoding and Verification of Simple UML State Machines in CASL/SPASS

