23 research outputs found

    Free Breathing Real-Time Cardiac Cine Imaging With Improved Spatial Resolution at 3 T

    Get PDF
    Objectives: The aim of this study was to evaluate free-breathing single-shot real-time cine imaging for functional cardiac imaging at 3 +/- with increased spatial resolution. Special emphasis of this study was placed on the influence of parallel imaging techniques. Materials and Methods: Gradient echo phantom images were acquired with GRAPPA and modified SENSE reconstruction using both integrated and separate reference scans as well as TGRAPPA and TSENSE. In vivo measurements were performed for GRAPPA reconstruction with an integrated and a separate reference scan, as well as TGRAPPA using balanced steady-state free precession protocols. Three clinical protocols, rtLRInt (T-res = 51.3 milliseconds; voxel, 2.5 x 5.0 x 10 mm(3)), rtMRSep (T-res = 48.8 milliseconds; voxel, 1.9 x 3.1 x 10 mm(3)), and rtHRSep ((Tres) = 48.3 milliseconds; voxel, 1.6 x 2.6 x 10 mm(3)), were investigated on 20 volunteers using GRAPPA reconstruction with internal as well as separate reference scans. End-diastolic volume, end-systolic volume, ejection fraction, peak ejection rate, peak filling rate, and myocardial mass were evaluated for the left ventricle and compared with an electrocardiogram-triggered segmented readout cine protocol used as standard of reference. All studies were performed at 3 T. Results: Phantom and in vivo data demonstrate that the combination of GRAPPA reconstruction with a separate reference scan provides an optimal compromise of image quality as well as spatial and temporal resolution. Functional values (P values) for the standard of reference, rtLRInt, rtMRSep, and rtHRSep end-diastolic volume were 141 +/- 24 mL, 138 +/- 21 mL, 138 +/- 19 mL, and 128 +/- 33 mL, respectively (P = 0.7, 0.7, 0.4); end-systolic volume, 55 +/- 15 mL, 61 +/- 14 mL, 58 +/- 12 mL, and 55 +/- 20 mL, respectively (P = 0.23, 0.43, 0.62); ejection fraction, 61% +/- 5%, 57% +/- 5%, 58% +/- 4%, and 56% +/- 8%, respectively (P = 0.01, 0.11, 0.06); peak ejection rate, 481 +/- 73 mL/s, 425 +/- 62 mL/s, 434 +/- 67 mL/s, and 381 +/- 86 mL/s, respectively (P = 0.03, 0.04, 0.01); peak filling rate, 555 +/- 80 mL/s, 480 +/- 70 mL/s, 500 +/- 70 mL/s, and 438 +/- 108 mL/s, respectively (P = 0.007, 0.05, 0.004); and myocardial mass, 137 +/- 26 g, 141 T 25 g, 141 +/- 23 g, and 130 +/- 31 g, respectively (P = 0.62, 0.54, 0.99). Conclusions: Using a separate reference scan and high acceleration factors up to R = 6, single-shot real-time cardiac imaging offers adequate temporal and spatial resolution for accurate assessment of global left ventricular function in free breathing with short examination times

    Free Breathing Real-Time Cardiac Cine Imaging With Improved Spatial Resolution at 3 T

    Get PDF
    Objectives: The aim of this study was to evaluate free-breathing single-shot real-time cine imaging for functional cardiac imaging at 3 +/- with increased spatial resolution. Special emphasis of this study was placed on the influence of parallel imaging techniques. Materials and Methods: Gradient echo phantom images were acquired with GRAPPA and modified SENSE reconstruction using both integrated and separate reference scans as well as TGRAPPA and TSENSE. In vivo measurements were performed for GRAPPA reconstruction with an integrated and a separate reference scan, as well as TGRAPPA using balanced steady-state free precession protocols. Three clinical protocols, rtLRInt (T-res = 51.3 milliseconds; voxel, 2.5 x 5.0 x 10 mm(3)), rtMRSep (T-res = 48.8 milliseconds; voxel, 1.9 x 3.1 x 10 mm(3)), and rtHRSep ((Tres) = 48.3 milliseconds; voxel, 1.6 x 2.6 x 10 mm(3)), were investigated on 20 volunteers using GRAPPA reconstruction with internal as well as separate reference scans. End-diastolic volume, end-systolic volume, ejection fraction, peak ejection rate, peak filling rate, and myocardial mass were evaluated for the left ventricle and compared with an electrocardiogram-triggered segmented readout cine protocol used as standard of reference. All studies were performed at 3 T. Results: Phantom and in vivo data demonstrate that the combination of GRAPPA reconstruction with a separate reference scan provides an optimal compromise of image quality as well as spatial and temporal resolution. Functional values (P values) for the standard of reference, rtLRInt, rtMRSep, and rtHRSep end-diastolic volume were 141 +/- 24 mL, 138 +/- 21 mL, 138 +/- 19 mL, and 128 +/- 33 mL, respectively (P = 0.7, 0.7, 0.4); end-systolic volume, 55 +/- 15 mL, 61 +/- 14 mL, 58 +/- 12 mL, and 55 +/- 20 mL, respectively (P = 0.23, 0.43, 0.62); ejection fraction, 61% +/- 5%, 57% +/- 5%, 58% +/- 4%, and 56% +/- 8%, respectively (P = 0.01, 0.11, 0.06); peak ejection rate, 481 +/- 73 mL/s, 425 +/- 62 mL/s, 434 +/- 67 mL/s, and 381 +/- 86 mL/s, respectively (P = 0.03, 0.04, 0.01); peak filling rate, 555 +/- 80 mL/s, 480 +/- 70 mL/s, 500 +/- 70 mL/s, and 438 +/- 108 mL/s, respectively (P = 0.007, 0.05, 0.004); and myocardial mass, 137 +/- 26 g, 141 T 25 g, 141 +/- 23 g, and 130 +/- 31 g, respectively (P = 0.62, 0.54, 0.99). Conclusions: Using a separate reference scan and high acceleration factors up to R = 6, single-shot real-time cardiac imaging offers adequate temporal and spatial resolution for accurate assessment of global left ventricular function in free breathing with short examination times

    Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau

    Autoantibodies against central nervous system antigens in a subset of B cell-dominant multiple sclerosis patients

    No full text
    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. AntiCNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins
    corecore