197 research outputs found

    Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    Full text link
    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. In a further step, this frequency comb is fully phase stabilized. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequency combs and providing a path for their generation in the visible and UV. Our results underscore the utility and effectiveness of planar microresonator frequency comb technology, that offers the potential to make frequency metrology accessible beyond specialized laboratories.Comment: Changes: - Added data (new Fig.4) on the first full phase stabilization of a dissipative Kerr soliton (or dissipative cavity soliton) in a microresonator - Extended Fig. 8 in the SI - Introduced nomenclature of dissipative Kerr solitons - Minor other change

    Biharmonic wave maps into spheres

    Get PDF
    A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed. The equation is reformulated as a conservation law and solved by a suitable Ginzburg-Landau type approximation

    More cost-sharing, less cost? Evidence on reference price drugs

    Get PDF
    This paper evaluates the causal effects of changes in reference prices (RP) on prices, copayments, and overall expenditures for off-patent pharmaceuticals. With reference pricing, firms set prices freely and the health plan covers the expenses only up to a certain threshold. We use quarterly data of the German market for anti-epileptics at the package level and at the active substance level and exploit that the RP has been adjusted in some of the active substances but not in others in a difference-in-differences framework. At the product level, we find that a lower RP reduces prices for both brand-name drugs and generics, but leads to higher copayments, especially for brand-name drugs. At the aggregate level, we find that a lower RP leads to savings for the public health insurer since revenues decrease substantially for brand-name firms and, to a lesser extent, also for generic firms. Overall expenditures (payments by the health insurer and the patients) for brand-name drugs decrease in proportion to the decrease in the RP, while the adjustment does not significantly influence overall expenditures for generics

    Octave Spanning Frequency Comb on a Chip

    Full text link
    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks

    eXplainable AI for Quantum Machine Learning

    Full text link
    Parametrized Quantum Circuits (PQCs) enable a novel method for machine learning (ML). However, from a computational point of view they present a challenge to existing eXplainable AI (xAI) methods. On the one hand, measurements on quantum circuits introduce probabilistic errors which impact the convergence of these methods. On the other hand, the phase space of a quantum circuit expands exponentially with the number of qubits, complicating efforts to execute xAI methods in polynomial time. In this paper we will discuss the performance of established xAI methods, such as Baseline SHAP and Integrated Gradients. Using the internal mechanics of PQCs we study ways to speed up their computation

    Sideband Injection Locking in Microresonator Frequency Combs

    Full text link
    Frequency combs from continuous-wave-driven Kerr-nonlinear microresonators have evolved into a key photonic technology with applications from optical communication to precision spectroscopy. Essential to many of these applications is the control of the comb's defining parameters, i.e., carrier-envelope offset frequency and repetition rate. An elegant and all-optical approach to controlling both degrees of freedom is the suitable injection of a secondary continuous-wave laser into the resonator onto which one of the comb lines locks. Here, we study experimentally such sideband injection locking in microresonator soliton combs across a wide optical bandwidth and derive analytic scaling laws for the locking range and repetition rate control. As an application example, we demonstrate optical frequency division and repetition rate phase-noise reduction to three orders of magnitude below the noise of a free-running system. The presented results can guide the design of sideband injection-locked, parametrically generated frequency combs with opportunities for low-noise microwave generation, compact optical clocks with simplified locking schemes and more generally, all-optically stabilized frequency combs from Kerr-nonlinear resonators.Comment: 13 pages, 6 figure

    Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble

    Full text link
    We demonstrate quantum control of a large spin-angular momentum associated with the F=3 hyperfine ground state of 133Cs. A combination of time dependent magnetic fields and a static tensor light shift is used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states, and may lead to improvement of some precision measurements.Comment: 4 pages, 4 figures (color

    Biharmonic wave maps: local wellposedness in high regularity

    Get PDF
    We show a local wellposedness result for biharmonic wave maps with initial data of sufficiently high Sobolev regularity. Moreover, we obtain a blow-up criterion for these solutions. In contrast to the wave maps equation we use a vanishing viscosity argument and an appropriate parabolic regularization in order to obtain the existence result. The geometric nature of the equation is exploited to prove convergence of the approximate solutions and uniqueness of the limit
    • …
    corecore