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BIHARMONIC WAVE MAPS INTO SPHERES

SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT

Abstract. A global weak solution of the biharmonic wave map equation in

the energy space for spherical targets is constructed. The equation is refor-

mulated as a conservation law and solved by a suitable Ginzburg-Landau type
approximation.

1. Introduction

We study biharmonic wave maps u : I ×Rn → Sl, where Sl is the l-dimensional
unit sphere in Rl+1, and I ⊂ R is an open interval. These maps are critical points
of the action functional

Φ(u) :=
1

2

∫
I×Rn

(|∂tu|2 − |∆u|2) d(t, x)

acting on functions with values in Sl. Here ∆u = (∆ui)i is the extrinsic Laplacian;
i.e., the Laplacian w.r.t. x when considering u as a map into Rl+1. In our main
Theorem 1.1 we construct a global weak solution for all data in the energy space.

We introduce two equivalent versions of the biharmonic wave map system for
regular solutions. Sufficiently smooth critical points u : I × Rn → Sl of Φ satisfy

(1.1) (∂2
t + ∆2)u ⊥ TuSl

which can be viewed as the geometric version of biharmonic wave map equation To
show this claim, for ϕ ∈ C∞c (I×Rn,Rl+1) we consider the variation uτ = π(u+τϕ),
where π : Rl+1 \ {0} → Sl denotes the retraction π(y) = y

|y| , and τ > 0 is small

enough. We compute

d

dτ
Φ(uτ )

∣∣∣
τ=0

=

∫
I×Rn

〈∂tu, ∂tDπ(u)ϕ〉 − 〈∆u,∆Dπ(u)ϕ〉d(t, x)

=−
∫
I×Rn

〈∂2
t u+ ∆2u,Dπ(u)ϕ〉d(t, x)

Choose a smooth orthonormal frame {v1(t, x), . . . , vl(t, x)} for Tu(t,x)S
l, a scalar

function η ∈ C∞c (I×Rn,R) and define ϕj = vjη, for j = 1, . . . , l. Since Dπ(u)ϕj =
ϕj , for a critical point u of Φ we obtain

0 =

∫
I×Rn

〈∂2
t u+ ∆2u, vj〉ηd(t, x).

We conclude that 〈∂2
t u+ ∆2u, vj〉 = 0 for any j = 1, . . . , l, which shows (1.1).
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For smooth u : I × Rn → Sl, equation (1.1) is equivalent to the PDE-version

(∂2
t + ∆2)u =

[
|∆u|2 − |∂tu|2 −∆|∇u|2 − 2 div〈∆u,∇u〉

]
u(1.2)

of the biharmonic wave map system. Here and below, for any A ∈ R(l+1)×(l+1)

the expression div〈∆u,A∇u〉 is shorthand for
∑n
i=1 ∂i〈∆u,A∂iu〉, where 〈·, ·〉 is

the scalar product in Rl+1. We also write 〈∇∆u,∇u〉 =
∑d
i=1〈∂i∆u, ∂iu〉 etc..

Moreover, | · | denotes the Euclidean norm in Rl+1 and in R(l+1)(l+1).
We show the above mentioned equivalence. Equation (1.1) means that there is

a function λu : I × Rn → R such that (∂2
t + ∆2)u = λuu. A solution to (1.2)

of course satisfies this identity with λu = [. . .]. To see the converse, we multiply
(∂2
t + ∆2)u = λuu by u and use the product rule. It follows that

λu = 〈∂2
t u, u〉+ 〈∆2u, u〉 = ∂t〈∂tu, u〉 − 〈∂tu, ∂tu〉+ div〈∇∆u, u〉 − 〈∇∆u,∇u〉.

By |u|2 = 1, we have 2〈∂ku, u〉 = ∂k|u|2 = 0 for k ∈ {t, 1, . . . , n}. We then compute

λu = −|∂tu|2 + ∆〈∆u, u〉 − 2 div〈∆u,∇u〉+ 〈∆u,∆u〉
= −|∂tu|2 + ∆ div〈∇u, u〉 −∆〈∇u,∇u〉 − 2 div〈∆u,∇u〉+ |∆u|2

= |∆u|2 − |∂tu|2 −∆|∇u|2 − 2 div〈∆u,∇u〉,
as asserted.

The energy corresponding to Φ is given by

E[u](t) =
1

2

∫
{t}×Rn

(|∂tu|2 + |∆u|2) dx.

We thus introduce the space for (global) weak solutions of our problems as

Z = {u ∈ L∞(R× Rn,Rl+1) |u(t, x) ∈ Sl a.e., ∂tu,∆u ∈ L2
loc(R;L2(Rn,Rl+1))}.

As above, one observes that

〈∆u, u〉 = div〈∇u, u〉 − 〈∇u,∇u〉 = −|∇u|2,
so that each u ∈ Z satisfies

(1.3) |∇u|2 ≤ |∆u| and |∇u| ∈ L4
loc(R;L4(Rn)).

A weak solution of (1.1) is defined as a map u ∈ Z fulfilling

(1.4) 0 =

∫
R×Rn

(
− 〈∂tu, ∂tv〉+ 〈∆u,∆v〉

)
dt dx

for all functions v belonging to

V := {v ∈ L∞(R× Rn,Rl+1) | |∂tv|, |∇v|2, |∆v| ∈ L2(R× Rn); suppt v is compact,

and v satisfies v(t, x) ∈ Tu(t,x)S
l for a.e. (t, x) ∈ R× Rn},

where suppt denotes the support of v : R → L∞(Rn,Rl+1), t 7→ v(t, ·). Moreover,
u ∈ Z is a weak solution of (1.2) if∫

R×Rn

(−〈∂tu, ∂tφ〉+ 〈∆u,∆φ〉) dt dx

=

∫
R×Rn

(
(|∆u|2 − |∂tu|2)〈u, φ〉 − |∇u|2 ∆〈u, φ〉+ 2〈∆u,∇u〉∇〈u, φ〉

)
dt dx

(1.5)

for all φ ∈W , where we put

W := {v ∈ L∞(R×Rn,Rl+1) | |∂tv|, |∇v|2, |∆v| ∈ L2(R×Rn); suppt v is compact}.
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Note that the terms on the right hand side in this definition are integrable by (1.3).
In Lemma 2.1 we prove the equivalence of the weak solvability of (1.1) and of (1.2).

The fourth order system (1.2) is analogous to the (second order) wave maps
system, see e.g. [7]. In this situation global weak solutions in the energy space have
been constructed by Shatah [6] for spherical targets and by Freire [2] for target
manifolds being homogeneous spaces. Our main result is a variant of the result of
Shatah for biharmonic wave maps.

Theorem 1.1. Let (u0, u1) ∈ L∞(Rn,Rl+1) × L2(Rn,Rl+1) satisfy ∆u0 ∈
L2(Rn,Rl+1) as well as u0(x) ∈ Sl and u1(x) ∈ Tu0(x)S

l for a.e. x ∈ Rn. Then
there is a global weak solution u ∈ Z of (1.2) with u(0) = u0 and ∂tu(0) = u1.
Moreover, the maps ∆u, ∂tu : R → L2(Rn,Rl+1) are continuous and bounded, we
have u(t, ·) ∈ Sl and ∂tu(t, ·) ∈ Tu(t,·)S

l a.e. for each t ∈ R, and the difference

u − u0 belongs to C(R;Hθ(Rn,Rl+1)) for all θ ∈ [0, 2). Finally, for all t ∈ R the
solution satisfies the energy identity

E[u](t) =
1

2

∫
{t}×Rn

(|∂tu|2 + |∆u|2) dx = E[u](0) =
1

2

∫
Rn

(|u1|2 + |∆u0|2) dx.

As in the case of the above mentioned results for wave maps, our construction
uses a suitable Ginzburg-Landau type approximation of (1.2). We refer the reader
to [3] for a survey on scalar fourth order wave-type equations.

We note that there is a second functional which also deserves to be called the
action functional corresponding to biharmonic wave maps, namely

Ψ(u) :=
1

2

∫
R×Rn

(|∂tu|2 − |(∆u)T |2) dt dx =
1

2

∫
R×Rn

(|∂tu|2 − |∆u|2 + |∇u|4) dt dx,

where (∆u)T = ∆u+ u|∇u|2 is the tangential component of the Laplacian. In this
case critical points satisfy the PDE

∂2
t u+ ∆2u+ 2 div(|∇u|2∇u) ⊥ TuSl

or equivalently

∂2
t u+ ∆2u+ 2 div(|∇u|2∇u) = u

(
|∆u|2 − |∂tu|2 −∆|∇u|2

− 2 div〈∆u,∇u〉 − 2|∇u|4
)
.

(1.6)

Due to the additional nonlinear term, our proof of Theorem 1.1 does not extend to
this equation.

2. The conservation law

As a first result we show that the systems (1.1) and (1.2) are also equivalent in
the weak sense and that they can be can be written in divergence form (2.1). The
latter fact will be crucial for our global existence result.

Lemma 2.1. For u ∈ Z the following assertions are equivalent.

(1) The map u is a weak solution of (1.1).
(2) The map u is a weak solution of (1.2).
(3) For all skew-symmetric matrices Λ ∈ R(l+1)×(l+1) the map u is a weak

solution of the system

0 = ∂t〈∂tu,Λu〉+ ∆〈∆u,Λu〉 − 2 div〈∆u,Λ∇u〉(2.1)
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on R× Rn with test functions in Ws, where

Ws := {v ∈ L∞(R× Rn) | |∂tv|, |∇v|2, |∆v| ∈ L2(R× Rn); suppt v is compact}.

Proof. (1)⇒(3). Let u be a weak solution of (1.1). Take ϕ ∈ Vs and Λ ∈
R(l+1)×(l+1) with ΛT = −Λ. The function v = ϕΛu belongs to V by (1.3) and
takes values in TuS

l since Λ is skew-symmetric. We thus obtain

0 =

∫
R×Rn

(−〈∂tu, ∂t(ϕΛu)〉+ 〈∆u,∆(ϕ(Λu)〉) dt dx

=

∫
R×Rn

(−∂tϕ〈∂tu,Λu〉+ ∆ϕ〈∆u,Λu〉+ 2∇ϕ〈∆u,Λ∇u〉) dt dx,

using that 〈∂tu,Λ∂tu〉 = 0 = 〈∆u,Λ∆u〉. Hence, u is a weak solution of (2.1).
(3)⇒(2). Let u be a weak solution of (2.1). We employ for 1 ≤ i < j ≤ l + 1

and ω ∈ Sl the tangent vectorfields

Λijω = (ei ⊗ ej − ej ⊗ ei)ω = ωiej − ωjei ∈ TωSl.

These vectorfields span TωS
l since each ξ ∈ TωSl has the representation

ξ = (ω ⊗ ξ − ξ ⊗ ω)ω =
∑

1≤i<j≤l+1

(ωiξj − ωjξi)Λijω.

For a given function φ ∈W we deduce

φ = 〈φ, u〉u+
∑

1≤i<j≤l+1

ϕijΛiju, where(2.2)

ϕij := ui(φj − 〈φ, u〉uj)− uj(φi − 〈φ, u〉ui).

Note that all maps ϕijΛiju and 〈φ, u〉u belong to W , and ϕij to Ws. Assertion (3)
then yields∫

R×Rn

(
− 〈∂tu, ∂t(ϕijΛiju)〉+ 〈∆u,∆(ϕijΛiju〉

)
dt dx

=

∫
R×Rn

(
− ∂tϕij〈∂tu,Λiju〉+ ∆ϕij〈∆u,Λiju〉+ 2∇ϕij〈∆u,Λij∇u〉

)
dt dx

= 0,

where two terms vanish because of the skew-symmetry of Λij . For the normal
component, we compute∫

R×Rn

(−〈∂tu, ∂t(〈φ, u〉u)〉+ 〈∆u,∆(〈φ, u〉u)〉) dt dx

=

∫
R×Rn

(
−|∂tu|2〈u, φ〉+ |∆u|2〈u, φ〉+ 2〈∆u,∇u〉∇〈φ, u〉+ 〈∆u, u〉∆〈φ, u〉

)
dt dx

=

∫
R×Rn

(
(|∆u|2 − |∂tu|2)〈u, φ〉 − |∇u|2 ∆〈u, φ〉+ 2〈∆u,∇u〉∇〈u, φ〉

)
dt dx

since 〈∂tu, u〉 = 0 and 〈∆u, u〉 = −|∇u|2. Summing up, the decomposition (2.2)
implies that u solves (1.2) weakly.

(2)⇒(1). Let u be a weak solution of (1.2). For test functions v ∈ W taking
values in Tu(t,x)S

l equation (1.4) follows from (1.5) since then 〈u, v〉 = 0. �
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Note that the conservation law can also be obtained via Noether’s theorem. For
any map u the action functional Φ is invariant under rotations R(τ)u = exp(τΛ)u.
This fact implies

0 =
d

dτ
Φ(R(τ)u,Ω)

∣∣∣
τ=0

=

∫
Ω

(〈∂tu, ∂t(Λu)〉 − 〈∆u,∆(Λu)〉) dt dx

=

∫
Ω

(∂t〈∂tu,Λu〉+ ∆〈∆u,Λu〉 − 2 div〈∆u,Λ∇u〉) dt dx

−
∫

Ω

〈(∂2
t + ∆2)u,Λu〉 dt dx.

for each subset Ω ⊂ R×Rn. The second integral vanishes since (∂2
t +∆2)u ⊥ TuSl,

and hence we have derived again the conservation law (2.1).

Remark 2.2. Similar to Lemma 2.1 one can prove that a (smooth) map u is a
solution of (1.6) iff for all Λ ∈ R(l+1)×(l+1) with ΛT = −Λ we have

0 = ∂t〈∂tu,Λu〉+ ∆〈∆u,Λu〉 − 2 div〈∆u,Λ∇u〉+ 2 div〈|∇u|2∇u,Λu〉.(2.3)

3. Existence of a global weak solution

In this section we construct a global weak solution of (1.2) using a penalization
method as in [2]. To this end, we fix an increasing function χ ∈ C∞([0,∞)) with
χ(s) = 1 for all s ≥ 1

2 and χ(s) = s for all s ≤ 1
4 . We then define the smooth map

F : Rl+1 → R by

F (x) = χ ◦ (|x|2 − 1)2.

Observe that F is bounded, its derivatives are compactly supported, F−1(0) = Sl,
and ∇F (x) = 0 if |x| = 1.

For ε > 0 and initial functions (u0, u1) ∈ L∞(Rn,Rl+1) × L2(Rn,Rl+1) with
∆u0 ∈ L2(Rn,Rl+1) and u0(x) ∈ Sl for almost every x ∈ Rn, we look at the
auxiliary system

∂2
t uε + ∆2uε + 1

ε∇F (uε) = 0

uε(0, ·) = u0, ∂tuε(0, ·) = u1,
(3.1)

without requiring that u(t, x) ∈ Sl if t 6= 0 a.e.. We point out that the initial value
u0 here (and below) is not square-integrable, which causes technical difficulties. In
contrast to the wave map case in [2], solutions of (3.1) do not possess finite speed
of propagation so that standard cut-off arguments cannot be used. Instead we look
for (distributional) solutions of the form uε = u0 + vε for a function vε solving the
shifted system

∂2
t vε + ∆2vε + 1

ε∇F (u0 + vε) + ∆2u0 = 0

vε(0, ·) = 0, ∂tvε(0, ·) = u1,
(3.2)

weakly, with test functions in W . For brevity, we sometimes write Hk instad of
Hk(Rn,Rl+1) for k ∈ Z, and analogously for other function spaces.

We use the following fact. Let Z ↪→ Y be reflexive Banach spaces, Z be dense
in Y , and f : R→ Y be a weakly continuous function which is essentially bounded
with values in Z. Then f is bounded and weakly continuous as a map into Z.
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Lemma 3.1. Let ε > 0 and (u0, u1) belong to L∞(Rn,Rl+1) × L2(Rn,Rl+1) with
∆u0 ∈ L2(Rn,Rl+1) and u0(x) ∈ Sl for almost every x ∈ Rn. Then there is a distri-
butional solution uε = u0 + vε of (3.1) such that ∆vε, ∂tvε ∈ L∞(R, L2(Rn,Rl+1)),
the functions vε : R → H2(Rn,Rl+1) and ∂tvε : R → L2(Rn,Rl+1) are weakly
continuous, and vε solves (3.2) weakly with test functions in W . For all t ∈ R, we
have the energy inequality

Eε[uε](t) :=

∫
{t}×Rn

(
1

2
|∂tuε|2 +

1

2
|∆uε|2 +

1

ε
F (uε)

)
dx

≤ Eε[uε](0) =
1

2

∫
Rn

(
|u1|2 + |∆u0|2

)
dx =: E0.(3.3)

Proof. 1) To construct the function v = uε−u0, we first study a regularized problem
(and we drop the subscript ε). Let u0 and u1 be the given data. By means of
standard mollifiers, we obtain functions u1,i in H2 converging to u1 in L2 as i→∞,
as well as u0,j ∈ L∞ such that ∆u0,j and ∆2u0,j belong to L2, the maps u0,j tend
to u0 pointwise a.e. and with a uniform bound, and (∆u0,j) converges to ∆u0 in
L2 as j → ∞. Finally, let αk be the characteristic function of the ball B(0, k) in
Rn. We now introduce the modified equation

∂2
t v + ∆2v + 1

εαk∇F (u0,j + v) + ∆2u0,j = 0,

v(0, ·) = 0, ∂tv(0, ·) = u1,i.
(3.4)

Define X = H2(Rn,Rl+1) × L2(Rn,Rl+1). We have (v(t), ∂tv(t)) ∈ X and we
look at the operator matrix

A =

(
0 −I

∆2 0

)
, D(A) = H4(Rn,Rl+1)×H2(Rn,Rl+1) ⊂ X.

Using the group version of the Lumer-Phillips theorem, see Corollary II.3.6 of [1],
one checks that −A generates a strongly continuous (unbounded) group. Moreover,
the map

G : X → X, G(ϕ,ψ) =

(
0

1
εαk∇F (u0,j + ϕ) + ∆2u0,j

)
is globally Lipschitz and C1. (For the differentiability one can employ the Sobolev
embedding H2 ↪→ Lp for some p > 2.). Slight variants of Theorems 6.1.2 and 6.1.5
in [5] hence provide a unique global solution v = vi,j,k ∈ C(R, H4) ∩ C1(R, H2) ∩
C2(R, L2) of the system (3.4) in this case. We can now differentiate the energy

Ẽj,k[v](t) :=

∫
{t}×Rn

(
1

2
|∂tv|2 +

1

2
|∆(u0,j + v)|2 +

1

ε
αkF (u0,j + v)

)
dx

with respect to t ∈ R. Integration by parts yields

∂tẼj,k[v](t) =

∫
{t}×Rn

(
〈∂tv, ∂ttv〉+ 〈∆2(u0,j+ v), ∂tv〉+ 〈 1εαk∇F (u0,j+ v), ∂tv〉

)
dx

= 0,

Ẽj,k[v](t) =

∫
Rn

(
1

2
|u1,i|2 +

1

2
|∆u0,j |2 +

1

ε
αkF (u0,j)

)
dx

for all t ∈ R. In the next steps, we perform the limits i, j, k → ∞ one after the
other. We will not relabel subsequences.
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2) As in Theorem 6.1.2 of [5], the solution (v, ∂tv) of (3.4) depends continuously
in X on the initial data. The sequence (vi,j,k)i thus tends in C(R, H2)∩C1(R, L2)
to a function vj,k for all j, k ∈ N, and a subsequence also converges pointwise a.e. in
(t, x). Note that, here and throughout the paper, the space C(R, X) (for a normed
space X) consists of all continuous functions v : R → X, and convergence therein
refers to locally uniform convergence (similarly for Ck(R, X)). Consequently, the
map vj,k satisfies the initial conditions vj,k(0, ·) = 0 and ∂tvj,k(0, ·) = u1, and it
solves the PDE in (3.4) weakly with test functions in W .

For a fixed t ∈ R, a further subsequence (vi,j,k(t, ·))i tends to vj,k(t, ·) a.e..
Hence, the above energy equality leads to the identity

Ẽj,k[vj,k](t) =

∫
Rn

(
1

2
|u1|2 +

1

2
|∆u0,j |2 +

1

ε
αkF (u0,j)

)
dx =: Ẽj,k0

for all j, k ∈ N and t ∈ R.

3) Now, we pass to the limit j →∞ for each fixed k ∈ N. Because of the cut-off

αk and F (u0) = 0, the energies Ẽj,k0 tend to

E0 :=
1

2

∫
Rn

(
|u1|2 + |∆u0|2

)
dx,

so that Ẽj,k[vj,k](t) is dominated by a number ck for all j ∈ N and t ∈ R. This
estimate leads to the convergence

∆vj,k ⇀ ϕk weak∗ in L∞(R;L2) and ∂tvj,k ⇀ ψk weak∗ in L∞(R;L2)

as j → ∞. The functions ϕk and ψk inherit the energy bound by E0. We further
obtain the estimate

‖vj,k(t)‖L2 =
∥∥∥∫ t

0

∂svj,k(s) ds
∥∥∥
L2
≤ 2c

1/2
k |t| ≤ 2mc

1/2
k

for all t ∈ [−m,m] and j, k ∈ N. The sequence (vj,k)j is thus bounded in the spaces
L∞(J ;H2) and W 1,∞(J ;L2) for each k ∈ N and each bounded interval J ⊆ R.
Proposition 1.1.4 in [4] implies the interpolative embedding

(3.5) L∞(J ;H2) ∩W 1,∞(J ;L2) ↪→ C1−β(J ;H2β)

for β ∈ (0, 1). So, by the Arzelà-Ascoli theorem, (vj,k)j tends to a function vk
strongly in C(J ;Hθ

loc) for each θ ∈ [0, 2) and hence in C(R;Hθ
loc) and pointwise

a.e., for a diagonal sequence. A standard test function argument then yields that
ϕk = ∆vk and ψk = ∂tvk. In particular, vk belongs to L∞(J ;H2)∩W 1,∞(J ;L2)∩
C(R;Hθ), vk(0) = 0, and ∆vk is weakly continuous with values in L2. Moreover,
it satisfies the energy inequality

Ẽk[vk](t) :=

∫
{t}×Rn

(
1

2
|∂tvk|2 +

1

2
|∆(u0 + vk)|2 +

1

ε
αkF (u0 + vk)

)
dx ≤ E0

for all t ∈ R and k ∈ N.
Since the nonlinear term has compact support in space, we next deduce that

vk satisfies the PDE in (3.4) for u0 instead of u0,j weakly with test functions in
W . This equation further shows that the weak derivative ∂2

t vk actually belongs
to L∞loc(R;H−2) so that ∂tvk is continuous from R to H−2 and, as seen above,
essentially bounded in L2. As a result, the map t 7→ ∂tvk(t) is bounded and weakly
continuous in L2. Since ∂tvj,k converges weak∗ in L∞(R;L2) and vanishes at t = 0,
we conclude that ∂tvk(0) = 0.
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4) In a final step, we let k → ∞. We can proceed as in Step 3) to construct
a limit function v with the desired properties. There is only one difference in the
derivation of the PDE for v. To apply the dominated convergence theorem, observe
that |∇F (u0 + vk)| is bounded by c |vk| and that a converging sequence in L2 has a
subsequence with a majorant in L2. Finally, the function uε = u0 + v satisfies the
assertions. �

Based on the energy estimate (3.3), we can now pass to the limit ε→ 0 in (3.1).
The special form of the penalization term implies that the resulting weak limit u
takes values in Sl. As in [2], we employ the equation (2.1) in divergence form to
show that u indeed solves of (1.2) weakly. To identify its initial values, we have to
assume that u1 maps into the tangent space of Sl.

Proof of Theorem 1.1. 1) We use the functions uj = u0 + vj from Lemma 3.1,

where vj = vεj for some εj → 0+. Let Λ ∈ R(l+1)×(l+1) be skew-symmetric and
ϕ ∈ C∞c (R × Rn). We take ϕΛuj as a test function for (3.1). (It does not belong
to V , in general, but the regularity provided by Lemma 3.1 suffices here.) Since
∇F (uj) is a scalar multiple of uj , we can argue as in the first part of the proof of
Lemma 2.1 and conclude that uj fulfills the equation

0 = ∂t〈∂tuj ,Λuj〉+ ∆〈∆uj ,Λuj〉 − 2 div〈∆uj ,Λ∇uj〉.(3.6)

in the distributional sense.
2) Starting from the energy estimate (3.3), we can next pass to the limit εj → 0

as in Step 3) of the proof of Lemma 3.1 (again without relabelling subsequences).
The functions vj then converge strongly in C(R;Hθ

loc) for θ < 2 and pointwise
a.e. to a map v ∈ C(R;Hθ). Moreover, ∂tvj and ∆vj tend to ∂tv and ∆v weak∗

in L∞(R, L2). Combining these facts, we infer that ∆v : R → L2 is bounded and
weakly continuous. The limit u := u0+v thus satisfies u(0, ·) = u0 and E[u](t) ≤ E0

for all t ∈ R. Thanks to (3.6) and the convergence of vj , the function u solves (2.1)
distributionally.

The energy bound (3.3) further says that ‖F (uj(t, ·))‖1 ≤ εjE0 for all j ∈ N and
t ∈ R. For each bounded interval J ⊆ R, Fatou’s Lemma now implies that∫

J×Rn

F (u) dx dt ≤ lim inf
j→∞

∫
J×Rn

F (uj) dx dt = 0.

Hence, F (u) = 0 and therefore u(t, x) ∈ Sl for a.e. (t, x) ∈ R×Rn. The continuity
of u − u0 : R → L2 then implies that u(t, x) belongs Sl for each t ∈ R and a.e.
x ∈ Rn. Since u ∈ Z, the map ∇u is contained L∞(R, L4) by (1.3). We can now
deduce that u weakly solves (2.1) with test functions in Ws, and so u is a weak
solution of (1.2) by Lemma 3.1. Moreover, the equation |u|2 = 1 yields 〈∂tu, u〉 = 0
so that ∂tu(t, x) is contained in the tangent space Tu(t,x)S

l for a.e. (t, x).

3) We still have to show the continuity of ∂tu,∆u : R → L2 and that
∂tu(0, ·) = u1. So far we know that the first map is essentially bounded. Let
Λ ∈ R(l+1)×(l+1) again be skew-symmetric. The equation (2.1) and the above stated
regularity properties of u imply that ∂t〈∂tu,Λu〉 is bounded in H−2 + W−1,4/3.
Hence, the function ψ : t 7→ 〈∂tu,Λu〉 is continuous in this space. Consequently, ψ
is bounded and weakly continuous in L2. Step 2) implies that for a.e. t ∈ R the
vector ∂tu(t, x) belongs to Tu(t,x)S

l for a.e. x ∈ Rn. In view of (2.2), by modifying
∂tu(t, ·) for t in set of measure 0 we obtain a representative ∂tu which is bounded
and weakly continuous as a map from R to L2.
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Next, we multiply the equations (3.6) for uj and (2.1) for u by a function ϕ ∈
C∞c (R × Rn). We integrate by parts in t ∈ [0,∞) with values in H−2 + W−1,4/3

and subtract the two resulting equations, which yields∫
{0}×Rn

〈u1 − e∂tu,Λu0〉ϕdx =

∫ ∞
0

∫
Rn

(−〈∂tuj ,Λuj〉+ 〈∂tu,Λu〉) ∂tϕdx dt

+

∫ ∞
0

∫
Rn

(〈∆uj ,Λuj〉 − 〈∆u,Λu〉) ∆ϕdx dt

+ 2

∫ ∞
0

∫
Rn

(〈∆uj ,Λ∇uj〉 − 〈∆u,Λ∇u〉〉)∇ϕdx dt.

By Step 2), the right hand side converges to zero as j →∞ so that

〈∂tu(0)− u1,Λu0〉 = 0.

As both u1 and ∂tu(0) belong to Tu0
Sl a.e., we conclude that ∂tu(0) = u1.

Finally, in the energy bound obtained in Step 2) we can replace the initial time
0 by any t ∈ R since u(t, ·) and ∂tu(t, ·) fulfill the conditions for the initial data and
hence

E[u](0) ≤ E[u](t) ≤ E[u](0)

which implies the energy identity. Further, in conjunction with the weak continuity,
this identity implies the strong continuity of ∂tu,∆u : R→ L2. �
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