119 research outputs found

    Multifaktorielle Genese des Synapsenuntergangs beim Morbus Alzheimer

    Get PDF

    Depth Augmented Omnidirectional Stereo for 6-DoF VR Photography

    Get PDF

    Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9)

    Get PDF
    BACKGROUND: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. METHODS: We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. RESULTS: Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80% and 69.92 +/- 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively). CONCLUSIONS: Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia

    The Holocene lake-evaporation history of the afro-alpine Lake Garba Guracha in the Bale Mountains, Ethiopia, based on δ18O records of sugar biomarker and diatoms

    Get PDF
    In eastern Africa, there are few long, high-quality records of environmental change at high altitudes, inhibiting a broader understanding of regional climate change. We investigated a Holocene lacustrine sediment archive from Lake Garba Guracha, Bale Mountains, Ethiopia, (3,950 m a.s.l.), and reconstructed high-altitude lake evaporation history using δ18O records derived from the analysis of compound-specific sugar biomarkers and diatoms. The δ18Odiatom and δ18Ofuc records are clearly correlated and reveal similar ranges (7.9‰ and 7.1‰, respectively). The lowest δ18O values occurred between 10 and 7 cal ka BP and were followed by a continuous shift towards more positive δ18O values. Due to the aquatic origin of the sugar biomarker and the similar trends of δ18Odiatom, we suggest that our lacustrine δ18Ofuc record reflects δ18Olake water. Therefore, without completely excluding the influence of the ‘amount-effect’ and the ‘source-effect‘, we interpret our record to reflect primarily the precipitation-to-evaporation ratio (P/E). We conclude that precipitation increased at the beginning of the Holocene, leading to an overflowing lake between ~10 and ~8 cal ka BP, indicated by low δ18Olake water values interpreted as reduced evaporative enrichment. This is followed by a continuous trend towards drier conditions, indicating at least a seasonally closed lake system

    Clinical performance and robustness evaluation of plasma amyloid-β42/40 prescreening

    Get PDF
    INTRODUCTION: Further evidence is needed to support the use of plasma amyloid β (Aβ) biomarkers as Alzheimer's disease prescreening tools. This study evaluated the clinical performance and robustness of plasma Aβ42 /Aβ40 for amyloid positivity prescreening. METHODS: Data were collected from 333 BioFINDER and 121 Alzheimer's Disease Neuroimaging Initiative study participants. Risk and predictive values versus percentile of plasma Aβ42 /Aβ40 evaluated the actionability of plasma Aβ42 /Aβ40 , and simulations modeled the impact of potential uncertainties and biases. Amyloid PET was the brain amyloidosis reference standard. RESULTS: Elecsys plasma Aβ42 /Aβ40 could potentially rule out amyloid pathology in populations with low-to-moderate amyloid positivity prevalence. However, simulations showed small measurement or pre-analytical errors in Aβ42 and/or Aβ40 cause misclassifications, impacting sensitivity or specificity. The minor fold change between amyloid PET positive and negative cases explains the biomarkers low robustness. DISCUSSION: Implementing plasma Aβ42 /Aβ40 for routine clinical use may pose significant challenges, with misclassification risks. HIGHLIGHTS: Plasma Aβ42 /Aβ40 ruled out amyloid PET positivity in a setting of low amyloid-positive prevalence. Including (pre-) analytical errors or measurement biases caused misclassifications. Plasma Aβ42 /Aβ40 had a low inherent dynamic range, independent of analytical method. Other blood biomarkers may be easier to implement as robust prescreening tools

    Recombinant tandem of pore-domains in a Weakly Inward rectifying K+ channel 2 (TWIK2) forms active lysosomal channels

    Get PDF
    Recombinant TWIK2 channels produce weak basal background K+ currents. Current amplitudes depend on the animal species the channels have been isolated from and on the heterologous system used for their re-expression. Here we show that this variability is due to a unique cellular trafficking. We identified three different sequence signals responsible for the preferential expression of TWIK2 in the Lamp1-positive lysosomal compartment. Sequential inactivation of tyrosine-based (Y(308)ASIP) and di-leucine-like (E266LILL and D(282)EDDQVDIL) trafficking motifs progressively abolishes the targeting of TWIK2 to lysosomes, and promotes its functional relocation at the plasma membrane. In addition, TWIK2 contains two N-glycosylation sites (N(79)AS and N(85)AS) on its luminal side, and glycosylation is necessary for expression in lysosomes. As shown by electrophysiology and electron microscopy, TWIK2 produces functional background K+ currents in the endolysosomes, and its expression affects the number and mean size of the lysosomes. These results show that TWIK2 is expressed in lysosomes, further expanding the registry of ion channels expressed in these organelles

    Neuronal ICAM-5 Plays a Neuroprotective Role in Progressive Neurodegeneration

    Get PDF
    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) leading to CNS inflammation and neurodegeneration. Current anti-inflammatory drugs have only limited efficacy on progressive neurodegenerative processes underlining the need to understand immune-mediated neuronal injury. Cell adhesion molecules play an important role for immune cell migration over the blood-brain barrier whereas their role in mediating potentially harmful contacts between invading immune cells and neurons is incompletely understood. Here, we assess the role of the CNS-specific neuronal adhesion molecule ICAM-5 using experimental autoimmune encephalomyelitis (EAE), an animal model of MS. ICAM-5 knockout mice show a more severe EAE disease course in the chronic phase indicating a neuroprotective function of ICAM-5 in progressive neurodegeneration. In agreement with the predominant CNS-specific function of ICAM-5, lymphocyte function-associated antigen 1 (LFA-1)/ICAM-1 contact between antigen-presenting cells and T helper (Th)17 cells in EAE is not affected by ICAM-5. Strikingly, intrathecal application of the shed soluble form, sICAM-5, ameliorates EAE disease symptoms and thus might serve locally as an endogenous neuronal defense mechanism which is activated upon neuroinflammation in the CNS. In humans, cerebrospinal fluid from patients suffering from progressive forms of MS shows decreased sICAM-5 levels, suggesting a lack of this endogenous protective pathway in these patient groups. Overall, our study points toward a novel role of ICAM-5 in CNS autoinflammation in progressive EAE/MS

    In vivo multiphoton imaging reveals gradual growth of newborn amyloid plaques over weeks

    Get PDF
    The kinetics of amyloid plaque formation and growth as one of the characteristic hallmarks of Alzheimer’s disease (AD) are fundamental issues in AD research. Especially the question how fast amyloid plaques grow to their final size after they are born remains controversial. By long-term two-photon in vivo imaging we monitored individual methoxy-X04-stained amyloid plaques over 6 weeks in 12 and 18 months old Tg2576 mice. We found that in 12 months old mice, newly appearing amyloid plaques were initially small in volume and subsequently grew over time. The growth rate of plaques was inversely proportional to their volume; thus amyloid plaques that were already present at the first imaging time point grew over time but slower compared to new plaques. Additionally, we analyzed 18 months old Tg2576 mice in which we neither found newly appearing plaques nor a significant growth of pre-existing plaques over 6 weeks of imaging. In conclusion, newly appearing amyloid plaques are initially small in size but grow over time until plaque growth can not be detected anymore in aged mice. These results suggest that drugs that target plaque formation should be most effective early in the disease, when plaques are growing

    K(2P)18.1 translates T cell receptor signals into thymic regulatory T cell development

    Get PDF
    It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K(2P)18.1 is a relevant regulator. Here, we identify K(2P)18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-kappa B-mediated K(2P)18.1 upregulation in tTreg progenitors. K(2P)18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-kappa B- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K(2P)18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K(2P)18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K(2P)18.1 variant that is associated with poor clinical outcomes indicate that K(2P)18.1 also plays a role in human Treg development. Pharmacological modulation of K(2P)18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K(2P)18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K(2P)18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.Peer reviewe
    corecore