704 research outputs found

    Active Learning for SAT Solver Benchmarking

    Get PDF
    Benchmarking is a crucial phase when developing algorithms. This also applies to solvers for the SAT (propositional satisfiability) problem. Benchmark selection is about choosing representative problem instances that reliably discriminate solvers based on their runtime. In this paper, we present a dynamic benchmark selection approach based on active learning. Our approach predicts the rank of a new solver among its competitors with minimum runtime and maximum rank prediction accuracy. We evaluated this approach on the Anniversary Track dataset from the 2022 SAT Competition. Our selection approach can predict the rank of a new solver after about 10 % of the time it would take to run the solver on all instances of this dataset, with a prediction accuracy of about 92 %. We also discuss the importance of instance families in the selection process. Overall, our tool provides a reliable way for solver engineers to determine a new solver’s performance efficiently

    Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe

    Get PDF
    The challenge of converting global agricultural food, fiber and energy crop cultivation into an ecologically and economically sustainable production process requires the most efficient agricultural management strategies. Development, control and maintenance of these strategies are highly dependent on temporally and spatially continuous information on crop status at the field scale. This paper introduces the application of a process-based, coupled hydro-agroecological model (PROMET) for the simulation of temporally and spatially dynamic crop growth on agriculturally managed fields. By assimilating optical remote sensing data into the model, the simulation of spatial crop dynamics is improved to a point where site-specific farming measures can be supported. Radiative transfer modeling (SLC) is used to provide maps of leaf area index from Earth Observation (EO). These maps are used in an assimilation scheme that selects closest matches between EO and PROMET ensemble runs. Validation is provided for winter wheat (years 2004, 2010 and 2011). Field samples validate the temporal dynamics of the simulations (avg. R-2 = 0.93) and > 700 ha of calibrated combine harvester data are used for accuracy assessment of the spatial yield simulations (avg. RMSE = 1.15 t center dot ha(-1)). The study shows that precise simulation of field-scale crop growth and yield is possible, if spatial remotely sensed information is combined with temporal dynamics provided by land surface process models. The presented methodology represents a technical solution to make the best possible use of the growing stream of EO data in the context of sustainable land surface management

    Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe

    Get PDF
    The challenge of converting global agricultural food, fiber and energy crop cultivation into an ecologically and economically sustainable production process requires the most efficient agricultural management strategies. Development, control and maintenance of these strategies are highly dependent on temporally and spatially continuous information on crop status at the field scale. This paper introduces the application of a process-based, coupled hydro-agroecological model (PROMET) for the simulation of temporally and spatially dynamic crop growth on agriculturally managed fields. By assimilating optical remote sensing data into the model, the simulation of spatial crop dynamics is improved to a point where site-specific farming measures can be supported. Radiative transfer modeling (SLC) is used to provide maps of leaf area index from Earth Observation (EO). These maps are used in an assimilation scheme that selects closest matches between EO and PROMET ensemble runs. Validation is provided for winter wheat (years 2004, 2010 and 2011). Field samples validate the temporal dynamics of the simulations (avg. R-2 = 0.93) and > 700 ha of calibrated combine harvester data are used for accuracy assessment of the spatial yield simulations (avg. RMSE = 1.15 t center dot ha(-1)). The study shows that precise simulation of field-scale crop growth and yield is possible, if spatial remotely sensed information is combined with temporal dynamics provided by land surface process models. The presented methodology represents a technical solution to make the best possible use of the growing stream of EO data in the context of sustainable land surface management

    The Relationship Between Response Probabilities and Data Quality in Grid Questions

    Get PDF
    Response probabilities are used in adaptive and responsive survey designs to guide data collection efforts, often with the goal of diversifying the sample composition. However, if response probabilities are also correlated with measurement error, this approach could introduce bias into survey data. This study analyzes the relationship between response probabilities and data quality in grid questions. Drawing on data from the probability-based GESIS panel, we found low propensity cases to more frequently produce item nonresponse and nondifferentiated answers than high propensity cases. However, this effect was observed only among long-time respondents, not among those who joined more recently. We caution that using adaptive or responsive techniques may increase measurement error while reducing the risk of nonresponse bias

    The Impact of Multi-Sensor Data Assimilation on Plant Parameter Retrieval and Yield Estimation for Sugar Beet

    Get PDF
    Yield Maps are a basic information source for site-specific farming. For sugar beet they are not available as in-situ measurements. This gap of information can be filled with Earth Observation (EO) data in combination with a plant growth model (PROMET) to improve farming and harvest management. The estimation of yield based on optical satellite imagery and crop growth modelling is more challenging for sugar beet than for other crop types since the plants' roots are harvested. These are not directly visible from EO. In this study, the impact of multi-sensor data assimilation on the yield estimation for sugar beet is evaluated. Yield and plant growth are modelled with PROMET. This multi-physics, raster-based model calculates photosynthesis and crop growth based on the physiological processes in the plant, including the distribution of biomass into the different plant organs (roots, stem, leaves and fruit) at different phenological stages. The crop variable used in the assimilation is the green (photosynthetically active) leaf area, which is derived as spatially heterogeneous input from optical satellite imagery with the radiative transfer model SLC (Soil-Leaf-Canopy). Leaf area index was retrieved from RapidEye, Landsat 8 OLI and Landsat 7 ETM+ data. It could be shown that the used methods are very suitable to derive plant parameters time-series with different sensors. The LAI retrievals from different sensors are quantitatively compared to each other. Results for sugar beet yield estimation are shown for a test-site in Southern Germany. The validation of the yield estimation for the years 2012 to 2014 shows that the approach reproduced the measured yield on field level with high accuracy. Finally, it is demonstrated through comparison of different spatial resolutions that small-scale in-field variety is modelled with adequate results at 20 m raster size, but the results could be improved by recalculating the assimilation at a finer spatial resolution of 5 m

    The Public Life of Data: Investigating Reactions to Visualizations on Reddit

    Get PDF
    This research investigates how people engage with data visualizations when commenting on the social platform Reddit. There has been considerable research on collaborative sensemaking with visualizations and the personal relation of people with data. Yet, little is known about how public audiences without specific expertise and shared incentives openly express their thoughts, feelings, and insights in response to data visualizations. Motivated by the extensive social exchange around visualizations in online communities, this research examines characteristics and motivations of people's reactions to posts featuring visualizations. Following a Grounded Theory approach, we study 475 reactions from the /r/dataisbeautiful community, identify ten distinguishable reaction types, and consider their contribution to the discourse. A follow-up survey with 168 Reddit users clarified their intentions to react. Our results help understand the role of personal perspectives on data and inform future interfaces that integrate audience reactions into visualizations to foster a public discourse about data

    High vulnerability of juvenile Nathusius' pipistrelle bats (Pipistrellus nathusii) at wind turbines

    Get PDF
    Large numbers of bats are killed by wind turbines globally, yet the specific demographic consequences of wind turbine mortality are still unclear. In this study, we compared characteristics of Nathusius' pipistrelles (Pipistrellus nathusii) killed at wind turbines (N = 119) to those observed within the live population (N = 524) during the summer migration period in Germany. We used generalized linear mixed-effects modeling to identify demographic groups most vulnerable to wind turbine mortality, including sex (female or male), age (adult or juvenile), and geographic origin (regional or long-distance migrant; depicted by fur stable hydrogen isotope ratios). Juveniles contributed with a higher proportion of carcasses at wind turbines than expected given their frequency in the live population suggesting that juvenile bats may be particularly vulnerable to wind turbine mortality. This effect varied with wind turbine density. Specifically, at low wind turbine densities, representing mostly inland areas with water bodies and forests where Nathusius' pipistrelles breed, juveniles were found more often dead beneath turbines than expected based on their abundance in the live population. At high wind turbine densities, representing mostly coastal areas where Nathusius' pipistrelles migrate, adults and juveniles were equally vulnerable. We found no evidence of increased vulnerability to wind turbines in either sex, yet we observed a higher proportion of females than males among both carcasses and the live population, which may reflect a female bias in the live population most likely caused by females migrating from their northeastern breeding areas migrating into Germany. A high mortality of females is conservation concern for this migratory bat species because it affects the annual reproduction rate of populations. A distant origin did not influence the likelihood of getting killed at wind turbines. A disproportionately high vulnerability of juveniles to wind turbine mortality may reduce juvenile recruitment, which may limit the resilience of Nathusius' pipistrelles to environmental stressors such as climate change or habitat loss. Schemes to mitigate wind turbine mortality, such as elevated cut-in speeds, should be implemented throughout Europe to prevent population declines of Nathusius' pipistrelles and other migratory bats
    • …
    corecore