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Abstract. Benchmarking is a crucial phase when developing algorithms.
This also applies to solvers for the SAT (propositional satisfiability) prob-
lem. Benchmark selection is about choosing representative problem in-
stances that reliably discriminate solvers based on their runtime. In this
paper, we present a dynamic benchmark selection approach based on
active learning. Our approach predicts the rank of a new solver among
its competitors with minimum runtime and maximum rank prediction
accuracy. We evaluated this approach on the Anniversary Track dataset
from the 2022 SAT Competition. Our selection approach can predict the
rank of a new solver after about 10 % of the time it would take to run
the solver on all instances of this dataset, with a prediction accuracy
of about 92 %. We also discuss the importance of instance families in
the selection process. Overall, our tool provides a reliable way for solver
engineers to determine a new solver’s performance efficiently.
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1 Introduction

One of the main phases of algorithm engineering is benchmarking. This also ap-
plies to propositional satisfiability (SAT), the archetypal NP-complete problem.
Benchmarking is, however, quite expensive regarding the runtime of experiments.
While benchmarking a single SAT solver might still be feasible, developing new,
competitive SAT solvers requires extensive experimentation with a variety of
ideas [8,2]. In particular, a new solver idea is rarely best on the first try. Thus, it
is highly desirable to reduce benchmarking time and discard unpromising ideas
early, allowing to test more approaches or spend more time on promising ones.
The field of SAT solver benchmarking is well established, but traditional bench-
mark selection approaches do not optimize benchmark runtime. Instead, they
focus on selecting a representative set of instances for scoring solvers [10,15]. For
the latter, SAT Competitions typically employ the PAR-2 score, i.e., the average
runtime with a penalty of 2τ for timeouts with time-limit τ [8].

In this paper, we present a novel benchmark selection approach based on
active learning. Our approach can predict the rank of a new solver with high ac-
curacy in only a fraction of the time needed to evaluate the complete benchmark.
Definition 1 specifies the problem we address.
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Definition 1 (New-Solver Problem). Given solvers A, instances I, run-
times r : A×I → [0, τ ] with time-limit τ , and a new solver â /∈ A, incrementally
select benchmark instances from I to maximize the confidence in predicting the
rank of â while minimizing the total benchmark runtime.

Note that our scenario assumes knowing the runtimes of all solvers, except
the new one, on all instances. One could also imagine a collaborative filtering
scenario, where runtimes are only partially known [23,25].

Our approach satisfies several desirable criteria for benchmarking: Rather
than outputting a binary classification, i.e., whether the new solver is worse
than an existing solver or not, we provide a scoring function that shows by which
margin a solver is worse and how similar it is to existing solvers. In particular,
our approach enables ranking the new solver amidst a set of existing solvers.
For this ranking, we do not even need to predict exact solver runtimes, which
is trickier. Further, we optimize the runtime that our strategy needs to arrive
at its conclusion. We use instance and runtime features. Moreover, we select
instances non-randomly and incrementally. In particular, we consider runtime
information from already done experiments when choosing the next. By doing so,
we can control the properties of the benchmarking approach, such as its required
runtime. Our approach is scalable in that it ranks a new solver â among any
number of known solvers A. In particular, we only subsample the benchmark
once instead of comparing pairwise against each other solver [21].

We evaluate our approach with the SAT Competition 2022 Anniversary Track
dataset [2], consisting of 5355 instances and runtimes of 28 solvers. We perform
cross-validation by treating each solver once as the new solver and learning to
predict the PAR-2 rank of that solver. On average, our predictions reach about
92% accuracy with only about 10% of the runtime required to evaluate these
solvers on the complete set of instances.

Our entire source code1 and experimental data2 are available on GitHub.

2 Related Work

Benchmarking is not only of high interest in many fields but also an active
research area on its own. Recent studies show that benchmark selection is chal-
lenging for multiple reasons. Biased benchmarks can easily lead to fallacious in-
terpretations [7]. Benchmarking also has many interchangeable parts, such as the
performance measures used, how measurement points are aggregated, and how
missing values are handled. Questionable research practices could alter these ele-
ments a-posteriori to meet expectations, thereby skewing the results [27]. In the
following, we discuss related work from the areas of static benchmark selection,
algorithm configuration, incremental benchmark selection, and active learning.
Table 1 compares the most relevant approaches, which all pursue slightly differ-
ent goals. Thus, our approach is not a general improvement over the others but
the only one fully aligned with Definition 1.
1 https://github.com/mathefuchs/al-for-sat-solver-benchmarking
2 https://github.com/mathefuchs/al-for-sat-solver-benchmarking-data

https://github.com/mathefuchs/al-for-sat-solver-benchmarking
https://github.com/mathefuchs/al-for-sat-solver-benchmarking-data
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Table 1: Comparison of features of our benchmark-selection approach, the static
benchmark-selection approach by Hoos et al. [15], the algorithm configuration
system SMAC [16], and the active-learning approaches by Matricon et al. [21].

Feature Hoos [15] SMAC [16] Matricon [21] Our approach
Ranking/Scoring � � (�) �

Runtime Minimization � � � �

Incremental/Non-Random � � � �

Scalability � � � �

Static Benchmark Selection. Benchmark selection is essential for competi-
tions, e.g., the SAT Competition. In such competitions, the organizers define
the rules for composing the benchmarks. These selection strategies are primarily
static, i.e., they do not depend on particular solvers to distinguish. Balint et al.
provide an overview of benchmark-selection criteria in different solver competi-
tions [1]. Froleyks et al. describe benchmark selection in recent SAT competi-
tions [8]. Manthey and Möhle find that competition benchmarks might contain
redundant instances and propose a feature-based approach to remove redun-
dancy [20]. Mısır presents a feature-based approach to reduce benchmarks by
matrix factorization and clustering [24].

Hoos et al. [15] discuss which properties are most desirable when selecting
SAT benchmark instances. The selection criteria are instance variety to avoid
over-fitting, adapted instance hardness (not too easy but also not too hard), and
avoiding duplicate instances. To filter too similar instances, they use a distance-
based approach with the SATzilla features [37,38]. The approach does, however,
not optimize for benchmark runtime and selects instances randomly, apart from
constraints on the instance hardness and feature distance.

Algorithm Configuration. Further related work can be found within the field
of algorithm configuration [14,32], e.g., the configuration system SMAC [16].
Thereby, the goal is to tune SAT solvers for a given sub-domain of problem in-
stances. Although this task is different from our goal, e.g., we do not need to
navigate the configuration space, there are similarities to our approach as well.
For example, SMAC also employs an iterative, model-based selection procedure,
though for configurations rather than instances. An algorithm configurator, how-
ever, cannot be used to rank/score a new solver since algorithm configuration
solemnly seeks to find the best-performing configuration. Also, while using a
model-based selection strategy to sample configurations, instance selection is
made randomly, i.e., without building a model over instances.

Incremental Benchmark Selection. Matricon et al. present an incremental
benchmark selection approach [21]. Their per-set efficient algorithm selection
problem (PSEAS) is similar to our New-Solver Problem (cf. Definition 1). Given
a pair of SAT solvers, they iteratively select a subset of instances until the
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Fig. 1: Types of machine learning (depiction inspired by Rubens et.al. [29]).

desired confidence level is reached to decide which of the two solvers is better.
The selection of instances depends on the choice of the solvers to distinguish.
They calculate a scoring metric for all unselected instances, run the experiment
with the highest score, and update the confidence. Their approach ticks off most
of our desired features in Table 1. However, the approach only compares solvers
binarily rather than providing a scoring. Thus, it is unclear how similar two given
solvers are or on which instances they behave similarly. Moreover, a significant
shortcoming is the lacking scalability with the number of solvers. Comparing only
pairs of solvers, evaluating a new solver requires sampling a separate benchmark
for each existing solver. In contrast, our approach allows comparing a new solver
against a set of existing solvers by sampling only one benchmark.

Active Learning. Prediction models in passive machine learning are trained
on datasets with given instance labels (cf. Fig. 1a). In contrast, active learn-
ing (AL) starts with no or little labeled data. It repeatedly selects interesting
problem instances for which to acquire labels, aiming to gradually improve the
prediction model (cf. Fig. 1b). AL methods are especially beneficial if acquiring
labels is computationally expensive, like obtaining solver runtimes. Without AL
methods, it is not obvious which instances to label and which not. On the one
hand, we want to maximize the utility an instance provides to our model, i.e.,
rank prediction accuracy, and on the other hand, minimize the cost, i.e., pre-
dicted runtime, associated with the instance’s acquisition. Thus, we strive for an
accurate prediction model without having to label every data point.

Rubens et. al. [29] survey active-learning advances. While synthesis-based AL
methods [5,9,34] generate instances for labeling, pool-based methods [11,13,19]
rely on a fixed set of unlabeled instances to sample from. Recent synthesis-based
methods within the field of SAT solving show how to generate problem instances
with desired properties [5,9]. This goal is, however, orthogonal to ours. While
those approaches want to generate instances on which a solver is good or bad,
we want to predict whether a solver is good or bad on an existing benchmark.
Volpato and Guangyan use pool-based AL to learn an instance-specific algorithm
selector [35]. Rather than benchmarking a solver’s overall performance, their goal
is to recommend the best solver out of a set of solvers for each SAT instance.
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Algorithm 1: Incremental Benchmarking Framework
Input: Solvers A, Instances I, Runtimes r : A× I → [0, τ ], Solver â
Output: Predicted Score of â, Measured Runtimes R

1 M ← initModel (A, I, r, â) // cf. Section 3.1

2 R ← ∅
3 while not stop (M) do // cf. Section 3.3
4 e ← selectNextInstance (M) // cf. Section 3.2
5 t ← runExperiment (â, e) // Runs â on e with timeout τ
6 R ← R∪ {(e, t)}
7 updateModel (M, R) // cf. Section 3.1

8 sâ ← predictScore(M) // cf. Section 3.1

9 return (sâ,R)

3 Active Learning for SAT Solver Benchmarking

Algorithm 1 outlines our benchmarking framework. Given a set of solvers A,
instances I and runtimes r, we first initialize a prediction model M for the
new solver â �∈ A (Line 1). The prediction model M is used to repeatedly
select an instance (Line 4) for benchmarking â (Line 5). The acquired result
is subsequently used to update the prediction model M (Line 7). When the
stopping criterion is met (Line 3), we quit the benchmarking loop and predict
the final score of â (Line 8). Algorithm 1 returns the predicted score of â as well
as the acquired instances and runtime measurements (Line 9).

Section 3.1 describes the underlying prediction model M and specifies how
we may derive a solver ranking from it. We discuss criteria for selecting instances
in Section 3.2. Section 3.3 concludes with possible stopping conditions.

3.1 Solver Model

The model M provides a runtime-label prediction function f : Â × I → R for
all solvers Â := A ∪ {â}. This prediction function powers instance selection
as described in Section 3.2. During model updates (Algorithm 1, Line 7), f is
trained to predict a transformed version of the acquired runtimes R. We describe
the runtime transformation in the subsequent section. The features described in
Section 4.2 serve as the input to the model. Further, note that we build a new
prediction model in each iteration since running experiments (Line 5) dominates
the runtime of model training by magnitudes. Finally, we predict the score of
the new solver â with the prediction function f (Line 8).

Runtime Transformation. For the prediction model M , we transform the
real-valued runtimes into discrete runtime labels on a per-instance basis. For
each instance e ∈ I, we use a clustering algorithm to assign the runtimes in{
r(a, e) | a ∈ A

}
to one of k clusters C1, . . . , Ck such that the fastest runtimes



412 T. Fuchs et al.

for the instance e are in cluster C1 and the slowest are in cluster Ck−1. Timeouts
τ always form a separate cluster Ck. The runtime transformation function γk :
A× I → {1, . . . , k} is then specified as follows:

γk(a, e) = j ⇔ r(a, e) ∈ Cj

Given an instance e ∈ I, a solver a ∈ A belongs to the γk(a, e)-fastest solvers on
instance e. In preliminary experiments, we achieved higher accuracy for predict-
ing such discrete runtime labels than for predicting raw runtimes. Research on
portfolio solvers has also shown that discretization works well in practice [4,26].

Ranking Solvers. To determine solver ranks, we use the transformed runtimes
γk(a, e) in the adapted scoring function sk : A → [1, 2 · k] as follows:

sk(a) :=
1

|I|
∑
e∈I

γ′
k(a, e) γ′

k(a, e) :=

{
2 · γk(a, e) if γk(a, e) = k

γk(a, e) otherwise
(1)

I.e., we apply PAR-2 scoring, which is commonly used in SAT competitions [8],
on the discrete labels. The scoring function sk induces a ranking among solvers.

3.2 Instance Selection

Selecting an instance based on the model is a core functionality of our framework
(cf. Algorithm 1, Line 4). In this section, we introduce two instance sampling
strategies, one that minimizes uncertainty and one that maximizes information
gain. Both strategies use the model’s label-prediction function f and are in-
spired by existing work within the realms of active learning [30]. These methods
require the model’s predictions to include probabilities for the k discrete runtime
labels. Let f ′ : Â × I → [0, 1]

k denote this modified prediction function. In the
following, the set Ĩ ⊆ I denotes the instances that have already been sampled.

Uncertainty Sampling. The uncertainty sampling strategy selects the in-
stance closest to the model’s decision boundary, i.e., we select the instance
e ∈ I \ Ĩ that minimizes U(e), which is specified as follows:

U(e) :=

∣∣∣∣
1

k
− max

n∈{1,...,k}
f ′(â, e)n

∣∣∣∣

Information-Gain Sampling. The information-gain sampling strategy selects
the instance with the highest expected entropy reduction regarding the runtime
labels of the instance. To be more specific, we select the instance e ∈ I \ Ĩ that
maximizes IG(e), which is specified as follows:

IG(e) := H(e)−
k∑

n=1

f ′(â, e)n Ĥn(e)
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Here, H(e) denotes the entropy of the runtime labels γ(a, e) over all a ∈ A and
H(e, n) denotes the entropy of these labels plus n as the runtime label for â.
The term Ĥn(e) is computed for every possible runtime label n ∈ {1, . . . , k}.
By maximizing information gain, we select instances that identify solvers with
similar behavior.

3.3 Stopping Criteria

In this section, we present the two dynamic stopping criteria in our experiments,
the Wilcoxon and the ranking stopping criterion (cf. Algorithm 1, Line 3).

Wilcoxon Stopping Criterion. The Wilcoxon stopping criterion stops the
active-learning process when we are confident enough that the predicted run-
time labels of the new solver are sufficiently different from existing solvers. This
criterion is loosely inspired by Matricon et. al. [21]. We use the average p-value
Wâ of a Wilcoxon signed-rank test w(S, P ) of the two runtime label distributions
S = {γ(a, e) | e ∈ I} for an existing solver a and P = {f(â, e) | e ∈ I} for the
new solver â:

Wâ :=
1

|A|
∑
a∈A

w(S, P )

To improve the stability of this criterion, we use an exponential moving average
to smooth out outliers and stop as soon as W (i)

exp drops below a fixed threshold:

W (0)
exp := 1

W (i)
exp := βWâ + (1− β)W (i−1)

exp

Ranking Stopping Criterion. The ranking stopping criterion is less sophisti-
cated in comparison. It stops the active-learning process if the ranking induced by
the model’s predictions (Equation 1) remained unchanged within the last l iter-
ations. However, the concrete values of the predicted score sâ might still change.
We are solemnly interested in the induced ranking in this case.

4 Experimental Design

Given all the previously presented instantiations for Algorithm 1, this section
outlines our experimental design, including our evaluation framework, used data
sets, hyper-parameter choices, and implementation details.

4.1 Evaluation Framework

As stated in the Introduction, this work addresses the New-Solver Problem
(cf. Definition 1). As described in Section 3.1, a prediction model M provides
us with an estimated scoring sâ for the new solver â.
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Algorithm 2: Evaluation Framework
Input: Solvers A, Instances I, Runtimes r : A× I → [0, τ ]
Output: Average Ranking Accuracy Ōacc, Average Fraction of Runtime Ōrt

1 O ← ∅
2 for â ∈ A do
3 A′ ← A \ {â}
4 (sâ,R) ← runALAlgorithm(A′, I, r, â) // Refer to Algorithm 1

// Determine Ranking Accuracy
5 Oacc ← 0
6 for a ∈ A do
7 if

(
sk(a)− sâ

)
·
(
par2(a)− par2(â)

)
> 0 then

8 Oacc ← Oacc +
1

|A|

// Determine Runtime Fraction
9 r ←

∑
e∈I

r(â, e)

10 Ort ← 0
11 for e ∈ I do
12 if ∃t, (e, t) ∈ R then
13 Ort ← Ort +

t
r

14 O ← O ∪
{
(Oacc, Ort)

}

15
(
Ōacc, Ōrt

)
← average(O)

16 return
(
Ōacc, Ōrt

)

To evaluate a concrete instantiation of Algorithm 1, i.e., a concrete choice
for all the sub-routines, we perform cross-validation on our set of solvers. Algo-
rithm 2 shows this. That means each solver plays the role of the new solver â
once (Line 2). Note that the new solver in each iteration is excluded from the
set of solvers A to avoid data leakage (Line 3). After running our active-learning
framework for solver â (Line 4), we compute the value of both our optimiza-
tion goals, i.e., ranking accuracy and runtime. We define the ranking accuracy
Oacc ∈ [0, 1] (higher is better) by the fraction of pairs (â, a) for all a ∈ A that
are decided correctly regarding the ground-truth scoring par2 (Lines 5-8). The
fraction of runtime that the algorithm needs to arrive at its conclusion is de-
noted by Ort ∈ [0, 1] (lower is better). This metric puts the runtime summed
over the sampled instances in relation to the runtime summed over all instances
in the dataset (Lines 9-13). Finally, we compute averages of the output metrics
in Line 15 after we have collected all cross-validation results in Line 14. Overall,
we want to find an approach that maximizes

Oδ := δOacc + (1− δ) (1−Ort) , (2)

whereby δ ∈ [0, 1] allows for linear weighting between the two optimization goals
Oacc and Ort. Plotting the approaches that maximize Oδ for all δ ∈ [0, 1] on
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an Ort-Oacc-diagram provides us with a Pareto front of the best approaches for
different optimization-goal weightings.

4.2 Data

In our experiments, we work with the dataset of the SAT Competition 2022
Anniversary Track [2]. The dataset consists of 5355 instances with respective
runtime data of 28 sequential SAT solvers. We also use a database of 56 instance
features3 from the Global Benchmark Database (GBD) by Iser et al. [17]. They
comprise instance size features and node distribution statistics for several graph
representations of SAT instances, among others, and are primarily inspired by
the SATzilla 2012 features described in [38]. All features are numeric and free of
missing values. We drop 10 out of 56 features because of zero variance. Overall,
prediction models have access to 46 instance features and 27 runtime features,
i.e., excluding the current new solver â.

Additionally, we retrieve instance-family information4 to evaluate the compo-
sition of our sampled benchmarks. Instance families comprise instances from the
same application domain, e.g., planning, cryptography, etc., and are a valuable
tool for analyzing solver performance.

For hyper-parameter tuning, we randomly sample 10% of the complete set
of 5355 instances with stratification regarding the instances’ family. All instance
families that are too small, i.e., 10% of them corresponds to less than one in-
stance, are put into one meta-family for stratification. This tuning dataset allows
for a more extensive exploration of the hyper-parameter space.

4.3 Hyper-parameters

Given Algorithm 1, there are several possible instantiations for the three sub-
routines, i.e., ranking, selection, and stopping. Also, there are different choices
for the runtime-label prediction model and runtime discretization. We describe
these experimental configurations in the following.

Ranking. Regarding ranking (cf. Section 3.1), we experiment with the following
approaches and hyper-parameter values:

– Observed PAR-2 ranking of already sampled instances
– Predicted runtime-label ranking

• History size: Consider the latest 1, 10, 20, 30, or 40 predictions within a
voting approach for stability. The latest x predictions for each instance
vote on the instance’s winning label.

• Fallback threshold: If the difference of scores between the new solver â
and another solver drops below 0.01 , 0.05 , or 0.1 , use the partially
observed PAR-2 ranking as a tie-breaker.

3 https://benchmark-database.de/getdatabase/base_db
4 https://benchmark-database.de/getdatabase/meta_db

https://benchmark-database.de/getdatabase/base_db
https://benchmark-database.de/getdatabase/meta_db
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Selection. For selection (cf. Section 3.2), we experiment with the following
methods and hyper-parameter values. Since the potential runtime of experi-
ments is by magnitudes larger than the model’s update time, we only consider
incrementing our benchmark by one instance at a time rather than using batches,
which is also proposed in current active-learning advances [31,34]. A drawback
of this is the lack of parallel execution of runtime experiments.

– Random sampling
– Uncertainty sampling

• Fallback threshold: Use random sampling for the first 0%, 5%, 10%,
15%, or 20% of instances to explore the instance space.

• Runtime scaling: Whether to normalize uncertainty scores per instance
by the average runtime of solvers on it or use the absolute values.

– Information-gain sampling
• Fallback threshold: Use random sampling for the first 0%, 5%, 10%,
15%, or 20% of instances to explore the instance space.

• Runtime scaling: Whether to normalize information-gain scores per in-
stance by the average runtime of solvers on it or use the absolute values.

Stopping. For stopping decisions (cf. Section 3.3), we experiment with the
following criteria and hyper-parameter values:

– Subset-size stopping criterion, using 10% or 20% of instances
– Ranking stopping criterion

• Minimum amount: Sample at least 2%, 8%, 10%, or 12% of instances
before applying the criterion.

• Convergence duration: Stop if the predicted ranking stays the same for
a number of sampled instances equal to 1% or 2% of all instances.

– Wilcoxon stopping criterion
• Minimum amount: Sample at least 2%, 8%, 10%, or 12% of instances

before applying the criterion.
• Average of p-values to drop below: 5%.
• Exponential-moving average: Incorporate previous significance values by

using an EMA with β = 0.1 or β = 0.7.

Prediction model. Our experiments only use one model configuration for
runtime-label prediction since an exhaustive grid search would be infeasible. In
preliminary experiments, we compared various model types from scikit-learn [28].
In particular, we conducted nested cross-validation, including hyper-parameter
tuning, and used Matthews Correlation Coefficient [12,22] to assess the perfor-
mance for predicting runtime labels. Our final choice is a stacking ensemble [36]
of two prediction models, a quadratic-discriminant analysis [33] and a random
forest [3]. Both these models can learn non-linear relationships between the in-
stance features and the runtime labels. Stacking means that another prediction
model, in our case a simple decision tree, decides which of the two ensemble
members makes the prediction on which instance.
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Runtime discretization. To define prediction targets, i.e., discrete runtime
labels, we use hierarchical clustering with k = 3 and a log-single-link criterion,
which produced the most useful labels in preliminary experiments. We denote
this adapted solver scoring function with s3. In our chosen hierarchical proce-
dure, each non-timeout runtime starts in a separate interval. We then gradually
merge intervals whose single-link logarithmic distance is the smallest until the
desired number of partitions is reached. Other clustering approaches that we
tried include hierarchical clustering with mean-, median-, and complete-link cri-
terion, as well as k-means and spectral clustering.

To obtain useful labels, we need to ensure that discretized labels still discrim-
inate solvers and align with the actual PAR-2 ranking. We analyzed the ranking
induced by s3 in preliminary experiments with the SAT Competition 2022 An-
niversary Track [2]. According to a Wilcoxon-signed-rank test with α = 0.05,
87.83% of solver pairs have significantly different scores after discretization,
only a slight drop compared to 89.95% before discretization. Further, our rank-
ing approach correctly decides for almost all (about 97.45%; σ = 3.68%) solver
pairs which solver is faster. In particular, the Spearman correlation of s3 and
PAR-2 ranking is about 0.988, which is very close to the optimal value of 1 [6].
All these results show that discretized runtimes are suitable for our framework.

4.4 Implementation Details

For reproducibility, our source code and data are available on GitHub (cf. foot-
notes in Section 1). Our code is implemented in Python using scikit-learn [28]
for making predictions and gbd-tools [17] for SAT-instance retrieval.

5 Evaluation

In this section, we evaluate our active-learning framework. First, we analyze and
tune the different sub-routines of our framework on the tuning dataset. Next,
we evaluate the best configurations with the full dataset. Finally, we analyze the
importance of different instance families to our framework.

5.1 Hyper-Parameter Analysis

Our experiments follow the evaluation framework introduced in Section 4.1.
Fig. 2 shows the performance of the approaches from Section 4.3 on Ort-Oacc-
diagrams for the hyper-parameter-tuning dataset. Evaluating a particular con-
figuration with Algorithm 2 returns a point (Ort, Oacc). We do not show in-
termediate results of the active-learning procedure but only the final results
after stopping. The plotted lines represent the best-performing configurations
per ranking approach (Fig. 2a), selection approach (Fig. 2b), and stopping crite-
rion (Fig. 2c). In particular, we show the Pareto front, i.e., of all configurations
that share a particular value of the plotted hyper-parameter, we take the maxi-
mum ranking accuracy over all remaining hyper-parameters not displayed in the
corresponding plot.
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Fig. 2: Ort-Oacc-diagrams comparing different hyper-parameter instantiations of
our active-learning framework on the hyper-parameter-tuning dataset. The x-
axis shows the ratio of total solver runtime on the sampled instances relative
to all instances. The y-axis shows the ranking accuracy (cf. Section 4.1). Each
line entails the front of Pareto-optimal configurations for the respective hyper-
parameter instantiation.
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Fig. 3: Scatter plot comparing different instantiations of trade-off parameter δ
for our active-learning framework on the hyper-parameter-tuning dataset. The
x-axis shows the fraction of runtime Ort of the sample, while the y-axes show
the fraction of instances sampled and ranking accuracy, respectively. The color
indicates the weighting between different optimization goals δ ∈ [0, 1]. The larger
δ, the more we favor accuracy over runtime.

Regarding ranking approaches (Fig. 2a), using the predicted s3-induced run-
time-label ranking consistently outperforms the partially observed PAR-2 rank-
ing for each possible value of the trade-off parameter δ. This outcome is expected
since selection decisions are not random. For example, we might sample more
instances of one family if it benefits discrimination of solvers. While the partially
observed PAR-2 score is skewed, the prediction model can account for this.

Regarding the selection approaches (Fig. 2b), uncertainty sampling performs
best in most cases. However, information-gain sampling is beneficial if runtime is
strongly favored (small δ; runtime fraction less than 5%). This result aligns with
our expectations: Information-gain sampling selects instances that maximize the
expected reduction in entropy. This means we sample instances revealing simi-
larities between solvers rather than differences, which helps to build a confident
model quickly. However, the method cannot select helpful instances for distin-
guishing solvers later. Random sampling performs reasonably well but is out-
performed by uncertainty sampling in all cases, showing the benefit of actively
selecting instances based on a prediction model.

Regarding the stopping criteria (Fig. 2c), the ranking stopping criterion per-
forms most consistently well. If accuracy is strongly favored (very high δ), the
Wilcoxon stopping criterion performs better. The subset-size stopping criterion
performs reasonably well but does not improve beyond a certain accuracy be-
cause of sampling a fixed subset of instances.

Fig. 3a shows an interesting consequence of weighting our optimization goals:
If we, on the one hand, desire to get a rough estimate of a solver’s performance
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Table 2: Performance comparison (on the full dataset) of the best-performing
active-learning approaches (AL), random sampling of the same runtime frac-
tion with 1000 repetitions (Random), and statically selecting the instances most
frequently sampled by active-learning approaches (Most Freq.)

(a) Best-performing AL approach for δ ∈ [0.2, 0.7]

AL Random Most Freq.
Sampled Runtime Fraction (%) 5.41 5.43 5.44
Sampled Instance Fraction (%) 26.53 5.43 27.75
Ranking Accuracy (%) 90.48 88.54 81.08

(b) Best-performing AL approach for δ ∈ (0.7, 0.8]

AL Random Most Freq.
Sampled Runtime Fraction (%) 10.35 10.37 10.37
Sampled Instance Fraction (%) 5.24 10.37 36.96
Ranking Accuracy (%) 92.33 91.61 84.52

fast (low δ), approaches favor selecting many easy instances. In particular, the
fraction of sampled instances is larger than the fraction of runtime. By having
many observations, it is easier to build a model. If we, on the other hand, desire
to get a good estimate of a solver’s performance in a moderate amount of time
(high δ), approaches favor selecting few, difficult instances. In particular, the
fraction of instances is smaller than the fraction of runtime.

Furthermore, Fig. 3b reveals which values make the most sense for δ. The
range δ ∈ [0.2, 0.8], thereby, corresponds to the points with a runtime fraction
between 0.03 and 0.22 We consider this region to be most promising, analogous
to the elbow method in cluster analysis [18].

5.2 Full-Dataset Evaluation

Having selected the most promising hyper-parameters, we run our active-learning
experiments on the complete Anniversary Track dataset (5355 instances). The
aforementioned range δ ∈ [0.2, 0.8] only results in two distinct configurations.
The best-performing approach for δ ∈ [0.2, 0.7] uses the predicted runtime-label
ranking, information-gain sampling, and ranking stopping criterion. It can pre-
dict a new solver’s PAR-2 ranking with 90.48% accuracy (Oacc) in only 5.41%
of the full evaluation time (Ort). The best-performing approach for δ ∈ (0.7, 0.8]
uses the predicted runtime-label ranking, uncertainty sampling, and ranking
stopping criterion. It can predict a new solver’s PAR-2 ranking with 92.33%
accuracy (Oacc) in only 10.35% of the full evaluation time (Ort).

Table 2 shows how both active-learning approaches (column AL) compare
against two static baselines: Random samples instances until it reaches roughly
the same fraction of runtime as the AL benchmark sets. We repeat sampling
1000 times and report average results. Most Freq. uses a static benchmark set
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Fig. 4: Scatter plot showing the importance of different instance families to our
framework on the full dataset. The x-axis shows the frequency of instance families
in the dataset. The y-axis shows the average frequency of instance families in
the samples selected by active learning. The dashed line represents families that
occur with the same frequency in the dataset and samples.

consisting of those instances most frequently sampled by our active learning
approach. In particular, we consider the average sampling frequency over all
solvers and Pareto-optimal active-learning approaches.

Both our AL approaches perform better than random sampling. However,
the performance differences are not significant regarding a Wilcoxon signed-
rank test with α = 0.05 and also depend on the fraction of sampled runtime
(cf. Fig. 2b). A clear advantage of our approach is, though, that it indicates
when to stop adding further instances, depending on the trade-off parameter δ.
While the active-learning results are less strong on the full dataset than on the
smaller tuning dataset, they still show the benefit of making benchmark selection
dependent on the solvers to distinguish.

A static benchmark using the most frequently AL-sampled instances per-
forms poorly, though, compared to active learning and random sampling. This
outcome is somewhat expected since the static benchmark does not reflect the
right balance of instance families: Families whose instances are uniform-randomly
selected by AL, e.g., for different solvers, appear less often in this benchmark
than families where some instances are sampled more often than others.

5.3 Instance-Family Importance

Selection decisions of our approach also reveal the importance of different in-
stance families to our framework. Fig. 4 shows the occurrence of instance fami-
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lies within the dataset and the benchmarks created by active learning. We use
the best-performing configurations for all δ ∈ [0, 1] and examine the selection
decisions by the active-learning approach on the SAT Competition 2022 Anniver-
sary Track dataset [2]. While most families appear with the same fraction in the
dataset and the sampled benchmarks, a few outliers need further discussion.
Problem instances of the families fpga, quasigroup-completion, and planning are
especially helpful to our framework in distinguishing solvers. Instances of these
families are selected over-proportionally in comparison to the full dataset. In
contrast, instances of the largest family, i.e., hardware-verification, roughly ap-
pear with the same fraction in the dataset and the sampled benchmarks. Finally,
instances of the family cryptography are less important in distinguishing solvers
than their vast weight in the dataset suggests. A possible explanation is that
these instances are very similar, such that a small fraction of them is sufficient
to estimate a solver’s performance on all of them.

6 Conclusions and Future Work

In this work, we have addressed the New-Solver Problem : Given a new solver,
we want to find its ranking amidst competitors. Our approach provides accu-
rate ranking predictions while needing significantly less runtime than a complete
evaluation on a given benchmark set. On data from the SAT Competition 2022
Anniversary Track, we can determine a new solver’s PAR-2 ranking with about
92% accuracy while only needing 10% of the full-evaluation time. We have eval-
uated several ranking algorithms, instance-selection approaches, and stopping
criteria within our sequential active-learning framework. We also took a brief
look at which instance families are the most prevalent in selection decisions.

Future work may compare further sub-routines for ranking, instance selec-
tion, and stopping. Additionally, one can apply our evaluation framework to
arbitrary computation-intensive problems, e.g., other NP-complete problems
than SAT, as all discussed active-learning methods are problem-agnostic. Such
problems share most of the relevant properties of SAT solving, i.e., there are es-
tablished instance features, a complete benchmark is expensive, and traditional
benchmark selection requires expert knowledge.

From the technical perspective, one could formulate runtime discretization
as an optimization problem rather than addressing it empirically. Further, a
major shortcoming of our current approach is the lack of parallelization, selecting
instances one at a time. Benchmarking on a computing cluster with n cores
benefits from having batches of n instances. However, bigger batch sizes n impede
active learning. Also, it is unclear how to synchronize instance selection and
updates of the prediction model without wasting too much runtime.
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