3 research outputs found

    Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species

    Get PDF
    Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas (Daphnia magna) to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) in F1 individuals whose mothers were exposed to a natural stressor. Roughly half of these environmentally induced DMPs persisted until generation F4. In contrast, treatment with the drug demonstrated that pervasive hypomethylation upon exposure is reset almost completely after one generation. These results suggest that environmentally induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of freshwater communities

    DNA methylation differences at birth after conception through ART

    Get PDF
    STUDY QUESTION: Is there a relation between ART and DNA methylation (DNAm) patterns in cord blood, including any differences between IVF and ICSI? SUMMARY ANSWER: DNAm at 19 CpGs was associated with conception via ART, with no difference found between IVF and ICSI. WHAT IS KNOWN ALREADY: Prior studies on either IVF or ICSI show conflicting outcomes, as both widespread effects on DNAm and highly localized associations have been reported. No study on both IVF and ICSI and genome-wide neonatal DNAm has been performed. STUDY DESIGN, SIZE, DURATION: This was a cross-sectional study comprising 87 infants conceived with IVF or ICSI and 70 conceived following medically unassisted conception. The requirement for inclusion in the study was an understanding of the Swedish language and exclusion was the use of donor gametes. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants were from the UppstART study, which was recruited from fertility and reproductive health clinics, and the Born into Life cohort, which is recruited from the larger LifeGene study. We measured DNAm from DNA extracted from cord blood collected at birth using a micro-array (450k array). Group differences in DNAm at individual CpG dinucleotides (CpGs) were determined using robust linear models and post-hoc Tukey's tests. MAIN RESULTS AND THE ROLE OF CHANCE: We found no association of ART conception with global methylation levels, imprinted loci and meta-stable epialleles. In contrast, we identify 19 CpGs at which DNAm was associated with being conceived via ART (effect estimates: 0.5-4.9%, PFDR < 0.05), but no difference was found between IVF and ICSI. The associated CpGs map to genes related to brain function/development or genes connected to the plethora of conditions linked to subfertility, but funct

    Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis

    Get PDF
    Objectives: To investigate how the genetic susceptibility gene DIO2 confers risk to osteoarthritis (OA) onset in humans and to explore whether counteracting the deleterious effect could contribute to novel therapeutic approaches. Methods: Epigenetically regulated expression of DIO2 was explored by assessing methylation of positional CpG-dinucleotides and the respective DIO2 expression in OA-affected and macroscopically preserved articular cartilage from end-stage OA patients. In a human in vitro chondrogenesis model, we measured the effects when thyroid signalling during culturing was either enhanced (excess T3 or lentiviral induced DIO2 overexpression) or decreased (iopanoic acid). Results: OA-related changes in methylation at a specific CpG dinucleotide upstream of DIO2 caused significant upregulation of its expression (ß=4.96; p=0.0016). This effect was enhanced and appeared driven specifically by DIO2 rs225014 risk allele carriers (ß=5.58, p=0.0006). During in vitro chondrogenesis, DIO2 overexpression resulted in a significant reduced capacity of chondrocytes to deposit extracellular matrix (ECM) components, concurrent with significant induction of ECM degrading enzymes (ADAMTS5, MMP13) and markers of mineralisation (ALPL, COL1A1). Given their concurrent and significant upregulation of expression, this process is likely mediated via HIF-2a/RUNX2 signalling. In contrast, we showed that inhibiting deiodinases during in vitro chondrogenesis contributed to prolonged cartilage homeostasis as reflected by significant increased deposition of ECM components and attenuated upregulation of matrix degrading enzymes. Conclusions: Our findings show how genetic variation at DIO2 could confer risk to OA and raised the possibility that counteracting thyroid signalling may be a novel therapeutic approach
    corecore