44 research outputs found

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients

    Two cases of FeLV-associated dermatoses

    Full text link
    Two cases of feline leukaemia virus (FeLV)-associated dermatosis are described. The first cat was affected by an ulcerative dermatitis identified as a giant-cell dermatosis. The second case was a cutaneous lymphoma. In both cases, FeLV antigens and FeLV genome were demonstrated in the affected skin immunologically and with polymerase chain reaction, respectively. The first case suggests that, like other retroviruses, at least some strains of FeLV can induce syncytium formation. As FeLV antigens and genome were demonstrated in a serologically negative cat, the second case suggests that focal skin FeLV replication may occur. FeLV-associated dermatoses are rare skin conditions that may be under-diagnosed

    Validating the Fun Toolkit - An instrument for measuring children's opinions of technology

    No full text
    The paper presents the Fun Toolkit (v3), a survey instrument that has been devised to assist researchers and developers to gather opinions about technology from children. In presenting the toolkit, the paper provides a reflective look at several studies where the toolkit has been validated and considers how the Fun Toolkit should be used as well as discussing how, and in what way, the instruments contained within it should be employed. This consideration of use is one of the novel contributions of the paper. The second major contribution is the discussion based around software appeal; in which the fit between the Fun Toolkit and usability and engagement is explored. The paper concludes that the Fun Toolkit is useful, that it can be used with some confidence to gather opinions from children and that it has the potential for use for other user experiences

    Cutaneous Lymphoma at Injection Sites : Pathological, Immunophenotypical, and Molecular Characterization in 17 Cats

    Get PDF
    Feline primary cutaneous lymphomas (FPCLs) account for 0.2% to 3% of all lymphomas in cats and are more frequently dermal nonepitheliotropic small T-cell tumors. Emergence of FPCL seems unrelated to feline leukemia virus (FeLV) serological positivity or to skin inflammation. A total of 17 cutaneous lymphomas with a history of vaccine injection at the site of tumor development were selected from 47 FPCLs. Clinical presentation, histology, immunophenotype, FeLV p27 and gp70 expression, and clonality were assessed. A majority of male (12/17), domestic short-haired (13/17) cats with a mean age of 11.3 years was reported. Postinjection time of development ranged from 15 days to approximately 9 years in 5 cats. At diagnosis, 11 of 17 cats had no evidence of internal disease. Lymphomas developed in interscapular (8/17), thoracic (8/17), and flank (1/17) cutaneous regions; lacked epitheliotropism; and were characterized by necrosis (16/17), angiocentricity (13/17), angioinvasion (9/17), angiodestruction (8/17), and peripheral inflammation composed of lymphoid aggregates (14/17). FeLV gp70 and/or p27 proteins were expressed in 10 of 17 tumors. By means of World Health Organization classification, immunophenotype, and clonality, the lesions were categorized as large B-cell lymphoma (11/17), anaplastic large T-cell lymphoma (3/17), natural killer cell\u2013like (1/17) lymphoma, or peripheral T-cell lymphoma (1/17). Lineage remained uncertain in 1 case. Cutaneous lymphomas at injection sites (CLIS) shared some clinical and pathological features with feline injection site sarcomas and with lymphomas developing in the setting of subacute to chronic inflammation reported in human beings. Persistent inflammation induced by the injection and by reactivation of FeLV expression may have contributed to emergence of CLIS
    corecore