5 research outputs found

    Diseño, montaje y ensayo de una bomba de mecate

    Get PDF
    Este proyecto se enmarca dentro de la iniciativa de la Universidad Carlos III de Madrid para construir, en una primera etapa, un laboratorio de tecnologías apropiadas al abastecimiento de agua. Este laboratorio se ubica en un espacio habilitado para la Escuela Politécnica Superior de la Universidad Carlos III e incluye un banco de ensayo de bombas manuales, un banco de ensayos para sistemas de bombeo alimentados con paneles fotovoltaicos y un banco de ensayos de sistemas de potabilización, incluyendo columnas de filtración. En la segunda etapa se procede a la construcción de dichas bombas, en este proyecto se detalla el diseño, montaje y ensayo de una bomba de mecate. En cuanto a la estructura de este proyecto, esta divido en varias secciones. En el primer bloque, se describe en primer lugar, la necesidad de abastecimiento de agua y en segundo lugar se introducen las diferentes alternativas de bombas manuales que se han utilizado o se utilizan en la actualidad. En el segundo bloque, se describe la bomba de mecate sobre la que se ha trabajado así como las dos alternativas en las que este proyecto se ha basado. Estas alternativas han sido la bomba de Madagascar y la bomba de Nicaragua, son muy parecidas a la que se ha construido. Para el montaje de la bomba que nos ocupa, se han utilizado los componentes, a valoración personal, mejorarían el diseño de la nueva bomba. A continuación, se detalla la instalación actual con medidas reales y sus características, al final de éste se describe el montaje de algunos elementos con una complicación del montaje elevada. Una vez definidos todos los parámetros de la instalación se procede a su caracterización. Las alternativas a estudio (bombas de Madagascar y Nicaragua) tienen un funcionamiento óptimo pero hay parámetros fundamentales que no están definidos, como por ejemplo, el nivel de agua que ha de tener el pozo, el caudal de extracción dependiendo de la frecuencia de giro de la rueda y de la altura de bombeo, etc. Es en este sentido cuando se atiende a la caracterización de la bomba, se han resuelto estas incógnitas en un estudio inicial. En posteriores proyectos se van a instalar procesos de control para que la caracterización que se pueda realizar sea más exacta y precisa. En este apartado también se ha concluido que los valores teóricos y experimentales tienen un error pequeño. Luego se incluye un apartado de nomenclatura donde se encuentran todos los parámetros que se han utilizado. Finalmente se describe una pequeña conclusión de este trabajo. En el bloque de anexos, se encuentran los planos de la instalación, reproducidos por el programa Solid Edge y parte de la bibliografía.Ingeniería Técnica en Mecánic

    Estudio de la capacidad de avance de "endoworm" en un modelo de intestino in vitro y ex vivo. Caracterización mecánica de los materiales

    Full text link
    [EN] "Endoworm" is a system adapted to a conventional endoscope, which allows the bowel recoil with the resulting advance through it. This work expects to evaluate the advance and fixation of "Endoworm" in a model of in vitro bowel and an animal model. It will be evaluated the ability depending on different parameters: stiffness, design and pressure of the inflatable elements, etc. Test will be done in artificial bowel model rigid and flexible, in addition to the test in animal model (pig). It will be measured the fixation strength and it will be analizated the parameters on which it depends. For this purpose, it will be designed an experimental device capable of measuring the fixation strength depending of the normal strength applied on the walls of the artificial bowel. The mechanical properties of the different materials will be measured, in addition Young Modulus and the breaking stress in a tensile test. These results are important to ensure that the forces exerted on the bowell are lower than their break limit. According to the results being obtained, it may be necessary to make minor modifications in the electronic control system (both at hardware and software level)[ES] “Endoworm” es un sistema de avance que, adaptado a un enteroscopio convencional, permite el replegamiento del intestino con el consiguiente avance a través de él. Con el presente trabajo se pretende evaluar la capacidad de avance y fijación de “endoworm” en un modelo de intestino in vitro y en modelo animal. Se evaluará la capacidad en función de diferentes parámetros: rigidez, diseño y presión de los elementos hinchables, etc Los ensayos se realizarán en un modelo de intestino artificial rígido y flexible, además de los ensayos en modelo animal (cerdo). Se medirá la fuerza de fijación y se analizarán los parámetros de los que depende. Para ello se diseñará el dispositivo experimental capaz de medir la fuerza de avance en función de la fuerza normal que se ejerce sobre las paredes del intestino artificial. Se medirán las propiedades mecánicas de los diferentes materiales. Se medirá el módulo de Young y el límite de rotura en un ensayo de tracción. Estos resultados son importantes para asegurar que las fuerzas que se ejercen sobre el intestino son muy inferiores a su límite de rotura. En función de los resultados que se vayan obteniendo puede ser necesario realizar pequeñas modificaciones en el sistema electrónico de control (tanto a nivel de hardware como de software).Tobella Arredondo, J. (2014). Estudio de la capacidad de avance de "endoworm" en un modelo de intestino in vitro y ex vivo. Caracterización mecánica de los materiales. http://hdl.handle.net/10251/59650Archivo delegad

    Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models

    Full text link
    [EN] Access to the small bowel by means of an enteroscope is difficult, even using current devices such as single-balloon or double-balloon enteroscopes. Exploration time and patient discomfort are the main drawbacks. The prototype 'Endoworm' analysed in this paper is based on a pneumatic translation system that, gripping the bowel, enables the endoscope to move forward while the bowel slides back over its most proximal part. The grip capacity is related to the pressure inside the balloon, which depends on the insufflate volume of air. Different materials were used as in vitro and ex vivo models: rigid polymethyl methacrylate, flexible silicone, polyester urethane and ex vivo pig small bowel. On measuring the pressure-volume relationship, we found that it depended on the elastic properties of the lumen and that the frictional force depended on the air pressure inside the balloons and the lumen's elastic properties. In the presence of a lubricant, the grip on the simulated intestinal lumens was drastically reduced, as was the influence of the lumen's properties. This paper focuses on the Endoworm's ability to grip the bowel, which is crucial to achieving effective endoscope forward advance and bowel foldingThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was funded by the Spanish Ministry of Economy and Competitiveness through Project (PI18/01365) and by the UPV/IIS LA Fe through the (Endoworm 3.0) Project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development FundTobella, J.; Pons-Beltrán, V.; Santonja, A.; Sánchez-Diaz, C.; Campillo Fernandez, AJ.; Vidaurre, A. (2020). Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine. 234(5):1-10. https://doi.org/10.1177/09544119209014141102345Iddan, G., Meron, G., Glukhovsky, A., & Swain, P. (2000). Wireless capsule endoscopy. Nature, 405(6785), 417-417. doi:10.1038/35013140Yamamoto, H., Sekine, Y., Sato, Y., Higashizawa, T., Miyata, T., Iino, S., … Sugano, K. (2001). Total enteroscopy with a nonsurgical steerable double-balloon method. Gastrointestinal Endoscopy, 53(2), 216-220. doi:10.1067/mge.2001.112181Arnott, I. D. R., & Lo, S. K. (2004). REVIEW: The Clinical Utility of Wireless Capsule Endoscopy. Digestive Diseases and Sciences, 49(6), 893-901. doi:10.1023/b:ddas.0000034545.58486.e6Hosoe, N., Takabayashi, K., Ogata, H., & Kanai, T. (2019). Capsule endoscopy for small‐intestinal disorders: Current status. Digestive Endoscopy, 31(5), 498-507. doi:10.1111/den.13346Fukumoto, A., Tanaka, S., Shishido, T., Takemura, Y., Oka, S., & Chayama, K. (2009). Comparison of detectability of small-bowel lesions between capsule endoscopy and double-balloon endoscopy for patients with suspected small-bowel disease. Gastrointestinal Endoscopy, 69(4), 857-865. doi:10.1016/j.gie.2008.06.007Akerman, P. A., Agrawal, D., Chen, W., Cantero, D., Avila, J., & Pangtay, J. (2009). Spiral enteroscopy: a novel method of enteroscopy by using the Endo-Ease Discovery SB overtube and a pediatric colonoscope. Gastrointestinal Endoscopy, 69(2), 327-332. doi:10.1016/j.gie.2008.07.042Moreels, T. G. (2017). Update in enteroscopy: New devices and new indications. Digestive Endoscopy, 30(2), 174-181. doi:10.1111/den.12920Pasha, S. F. (2012). Diagnostic yield of deep enteroscopy techniques for small-bowel bleeding and tumors. Techniques in Gastrointestinal Endoscopy, 14(2), 100-105. doi:10.1016/j.tgie.2012.02.001Lenz, P., & Domagk, D. (2012). Double- vs. single-balloon vs. spiral enteroscopy. Best Practice & Research Clinical Gastroenterology, 26(3), 303-313. doi:10.1016/j.bpg.2012.01.021Baniya, R., Upadhaya, S., Subedi, S. C., Khan, J., Sharma, P., Mohammed, T. S., … Jamil, L. H. (2017). Balloon enteroscopy versus spiral enteroscopy for small-bowel disorders: a systematic review and meta-analysis. Gastrointestinal Endoscopy, 86(6), 997-1005. doi:10.1016/j.gie.2017.06.015Menciassi, A., & Dario, P. (2003). Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1811), 2287-2298. doi:10.1098/rsta.2003.1255Zarrouk, D., Sharf, I., & Shoham, M. (2011). Analysis of Wormlike Robotic Locomotion on Compliant Surfaces. IEEE Transactions on Biomedical Engineering, 58(2), 301-309. doi:10.1109/tbme.2010.2066274Poon, C. C. Y., Leung, B., Chan, C. K. W., Lau, J. Y. W., & Chiu, P. W. Y. (2015). Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues. Surgical Endoscopy, 30(2), 772-778. doi:10.1007/s00464-015-4224-8Kassim, I., Phee, L., Ng, W. S., Feng Gong, Dario, P., & Mosse, C. A. (2006). Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine, 25(3), 49-56. doi:10.1109/memb.2006.1636351Kim, Y.-T., & Kim, D.-E. (2010). Novel Propelling Mechanisms Based on Frictional Interaction for Endoscope Robot. Tribology Transactions, 53(2), 203-211. doi:10.1080/10402000903125337Massalou, D., Masson, C., Foti, P., Afquir, S., Baqué, P., Berdah, S.-V., & Bège, T. (2016). Dynamic biomechanical characterization of colon tissue according to anatomical factors. Journal of Biomechanics, 49(16), 3861-3867. doi:10.1016/j.jbiomech.2016.10.023Egorov, V. I., Schastlivtsev, I. V., Prut, E. V., Baranov, A. O., & Turusov, R. A. (2002). Mechanical properties of the human gastrointestinal tract. Journal of Biomechanics, 35(10), 1417-1425. doi:10.1016/s0021-9290(02)00084-2Hoeg, H. D., Slatkin, A. B., Burdick, J. W., & Grundfest, W. S. (s. f.). Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). doi:10.1109/robot.2000.844825Terry, B. S., Passernig, A. C., Hill, M. L., Schoen, J. A., & Rentschler, M. E. (2012). Small intestine mucosal adhesivity to in vivo capsule robot materials. Journal of the Mechanical Behavior of Biomedical Materials, 15, 24-32. doi:10.1016/j.jmbbm.2012.06.018Kim, J.-S., Sung, I.-H., Kim, Y.-T., Kwon, E.-Y., Kim, D.-E., & Jang, Y. H. (2006). Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribology Letters, 22(2), 143-149. doi:10.1007/s11249-006-9073-0Lyle, A. B., Luftig, J. T., & Rentschler, M. E. (2013). A tribological investigation of the small bowel lumen surface. Tribology International, 62, 171-176. doi:10.1016/j.triboint.2012.11.018De Simone, A., & Luongo, A. (2013). Nonlinear viscoelastic analysis of a cylindrical balloon squeezed between two rigid moving plates. International Journal of Solids and Structures, 50(14-15), 2213-2223. doi:10.1016/j.ijsolstr.2013.03.028Sliker, L. J., Ciuti, G., Rentschler, M. E., & Menciassi, A. (2016). Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribology International, 102, 472-484. doi:10.1016/j.triboint.2016.06.003Zhang, C., Liu, H., & Li, H. (2014). Experimental investigation of intestinal frictional resistance in the starting process of the capsule robot. Tribology International, 70, 11-17. doi:10.1016/j.triboint.2013.09.019Zhang, C., Liu, H., & Li, H. (2013). Modeling of Frictional Resistance of a Capsule Robot Moving in the Intestine at a Constant Velocity. Tribology Letters, 53(1), 71-78. doi:10.1007/s11249-013-0244-5Zhang, C., Liu, H., Tan, R., & Li, H. (2012). Modeling of Velocity-dependent Frictional Resistance of a Capsule Robot Inside an Intestine. Tribology Letters, 47(2), 295-301. doi:10.1007/s11249-012-9980-1Woo, S. H., Kim, T. W., Mohy-Ud-Din, Z., Park, I. Y., & Cho, J.-H. (2011). Small intestinal model for electrically propelled capsule endoscopy. BioMedical Engineering OnLine, 10(1), 108. doi:10.1186/1475-925x-10-108Sliker, L. J., & Rentschler, M. E. (2012). The Design and Characterization of a Testing Platform for Quantitative Evaluation of Tread Performance on Multiple Biological Substrates. IEEE Transactions on Biomedical Engineering, 59(9), 2524-2530. doi:10.1109/tbme.2012.2205688Sánchez-Diaz, C., Senent-Cardona, E., Pons-Beltran, V., Santonja-Gimeno, A., & Vidaurre, A. (2018). Endoworm: A new semi-autonomous enteroscopy device. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(11), 1137-1143. doi:10.1177/0954411918806330Persson, B. N. J., & Spencer, N. D. (1999). Sliding Friction: Physical Principles and Applications. Physics Today, 52(1), 66-68. doi:10.1063/1.882557Gerson, L. B., Flodin, J. T., & Miyabayashi, K. (2008). Balloon-assisted enteroscopy: technology and troubleshooting. Gastrointestinal Endoscopy, 68(6), 1158-1167. doi:10.1016/j.gie.2008.08.012Glozman, D., Hassidov, N., Senesh, M., & Shoham, M. (2010). A Self-Propelled Inflatable Earthworm-Like Endoscope Actuated by Single Supply Line. IEEE Transactions on Biomedical Engineering, 57(6), 1264-1272. doi:10.1109/tbme.2010.2040617Baek, N.-K., Sung, I.-H., & Kim, D.-E. (2004). Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218(3), 193-201. doi:10.1243/095441104323118914Kwon, J., Cheung, E., Park, S., & Sitti, M. (2006). Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomedical Materials, 1(4), 216-220. doi:10.1088/1748-6041/1/4/007Kim, B., Lee, S., Park, J. H., & Park, J.-O. (2005). Design and Fabrication of a Locomotive Mechanism for Capsule-Type Endoscopes Using Shape Memory Alloys (SMAs). IEEE/ASME Transactions on Mechatronics, 10(1), 77-86. doi:10.1109/tmech.2004.842222Terry, B. S., Lyle, A. B., Schoen, J. A., & Rentschler, M. E. (2011). Preliminary Mechanical Characterization of the Small Bowel for In Vivo Robotic Mobility. Journal of Biomechanical Engineering, 133(9). doi:10.1115/1.400516

    Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C : A prospective observational study

    Get PDF
    Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with ≥2 clinical signs/symptoms of NP-C were considered 'suspected NP-C' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI ≥70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 [4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores ≥70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis
    corecore