518 research outputs found

    Dark Energy Survey Year 1 results : cosmological constraints from cluster abundances, weak lensing, and galaxy correlations

    Get PDF
    We present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4 × 2pt þ N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain Ωm ¼ 0.305þ0.055 −0.038 and σ8 ¼ 0.783þ0.064 −0.054 . This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat νΛCDM model. Consequently, we combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6 × 2pt þ N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multiprobe analyses of upcoming wide imaging surveys

    RedMaPPer: Evolution and Mass Dependence of the Conditional Luminosity Functions of Red Galaxies in Galaxy Clusters

    Full text link
    We characterize the luminosity distribution, halo mass dependence, and redshift evolution of red galaxies in galaxy clusters using the SDSS Data Release 8 RedMaPPer cluster sample. We propose a simple prescription for the relationship between the luminosity of both central and satellite galaxies and the mass of their host halos, and show that this model is well-fit by the data. Using a larger galaxy cluster sample than previously employed in the literature, we find that the luminosities of central galaxies scale as logLALlog(M200b)\langle \log L \rangle \propto A_L \log (M_{200b}), with AL=0.39±0.04A_L=0.39\pm0.04, and that the scatter of the central--galaxy luminosity at fixed M200bM_{200b} ( σlogLM\sigma_{\log L|M}) is 0.230.04+0.050.23 ^{+0.05}_{-0.04} dex, with the error bar including systematics due to miscentering of the cluster finder, photometry, and photometric redshift estimation. Our data prefers a positive correlation between the luminosity of central galaxies and the observed richness of clusters at a fixed halo mass, with an effective correlation coefficient deff=0.360.16+0.17d_{\rm{eff}}=0.36^{+0.17}_{-0.16}. The characteristic luminosity of satellites becomes dimmer from z=0.3z=0.3 to z=0.1z=0.1 by 20%\sim 20\% after accounting for passive evolution. We estimate the fraction of galaxy clusters where the brightest galaxy is not the central to be PBNC20%P_{\rm{BNC}} \sim 20\%. We discuss implications of these findings in the context of galaxy evolution and the galaxy--halo connection.Comment: 29 pages, 17 figures, 5 tables. Accepted by AP

    Dark Energy Survey Year 1 Clusters are Consistent with Planck

    Full text link
    The recent Dark Energy Survey Year 1 (DES-Y1) analysis of galaxy cluster abundances and weak lensing produced Ωm\Omega_{\rm m} and σ8\sigma_8 constraints in 5.6σ\sigma tension with Planck. It is suggested in that work that this tension is driven by unmodelled systematics in optical cluster selection. We present a novel simulation-based forward modeling framework that explicitly incorporates cluster selection into its model predictions. Applying this framework to the DES-Y1 data we find consistency with Planck, resolving the tension found in the DES-Y1 analysis. An extension of this approach to the final DES data set will produce robust constraints on Λ\LambdaCDM parameters and correspondingly strong tests of cosmological models.Comment: 6 pages, 2 figures, 1 table, Supplemental material with 2 figures. Submitted to Physical Review Letter

    Buzzard to Cardinal: Improved Mock Catalogs for Large Galaxy Surveys

    Get PDF
    We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift of z = 2.35 to a depth of mr = 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy cross-correlations measured in three different luminosity threshold samples. The Cardinal mocks also feature a new color assignment model that can simultaneously fit color-dependent galaxy clustering in three different luminosity bins. We have developed an algorithm that uses photometric data to further improve the color assignment model and have also developed a novel method to improve small-scale lensing below the ray-tracing resolution. These improvements enable the Cardinal mocks to accurately reproduce the abundance of galaxy clusters and the properties of lens galaxies in the DES data. As such, these simulations will be a valuable tool for future cosmological analyses based on large sky surveys

    UNIT project: Universe NN-body simulations for the Investigation of Theoretical models from galaxy surveys

    Full text link
    We present the UNIT NN-body cosmological simulations project, designed to provide precise predictions for nonlinear statistics of the galaxy distribution. We focus on characterizing statistics relevant to emission line and luminous red galaxies in the current and upcoming generation of galaxy surveys. We use a suite of precise particle mesh simulations (FastPM) as well as with full NN-body calculations with a mass resolution of 1.2×109h1\sim 1.2\times10^9\,h^{-1}M_{\odot} to investigate the recently suggested technique of Angulo & Pontzen 2016 to suppress the variance of cosmological simulations We study redshift space distortions, cosmic voids, higher order statistics from z=2z=2 down to z=0z=0. We find that both two- and three-point statistics are unbiased. Over the scales of interest for baryon acoustic oscillations and redshift-space distortions, we find that the variance is greatly reduced in the two-point statistics and in the cross correlation between halos and cosmic voids, but is not reduced significantly for the three-point statistics. We demonstrate that the accuracy of the two-point correlation function for a galaxy survey with effective volume of 20 (h1h^{-1}Gpc)3^3 is improved by about a factor of 40, indicating that two pairs of simulations with a volume of 1 (h1h^{-1}Gpc)3^3 lead to the equivalent variance of \sim150 such simulations. The NN-body simulations presented here thus provide an effective survey volume of about seven times the effective survey volume of DESI or Euclid. The data from this project, including dark matter fields, halo catalogues, and their clustering statistics, are publicly available at http://www.unitsims.org.Comment: 12 pages, 9 figures. This version matches the one accepted by MNRAS. The data from this project are publicly available at: http://www.unitsims.or

    Covariance matrices for variance-suppressed simulations

    Full text link
    Cosmological NN-body simulations provide numerical predictions of the structure of the universe against which to compare data from ongoing and future surveys. The growing volume of the surveyed universe, however, requires increasingly large simulations. It was recently proposed to reduce the variance in simulations by adopting fixed-amplitude initial conditions. This method has been demonstrated not to introduce bias in various statistics, including the two-point statistics of galaxy samples typically used for extracting cosmological parameters from galaxy redshift survey data. However, we must revisit current methods for estimating covariance matrices for these simulations to be sure that we can properly use them. In this work, we find that it is not trivial to construct the covariance matrix analytically, but we demonstrate that EZmock, the most efficient method for constructing mock catalogues with accurate two- and three-point statistics, provides reasonable covariance matrix estimates for variance-suppressed simulations. We further investigate the behavior of the variance suppression by varying galaxy bias, three-point statistics, and small-scale clustering.Comment: 9 pages, 7 figure

    CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST

    Get PDF
    This paper introduces cosmoDC2, a large synthetic galaxy catalog designed to support precision dark energy science with the Large Synoptic Survey Telescope (LSST). CosmoDC2 is the starting point for the second data challenge (DC2) carried out by the LSST Dark Energy Science Collaboration (LSST DESC). The catalog is based on a trillion-particle, 4.225 Gpc^3 box cosmological N-body simulation, the `Outer Rim' run. It covers 440 deg^2 of sky area to a redshift of z=3 and is complete to a magnitude depth of 28 in the r-band. Each galaxy is characterized by a multitude of properties including stellar mass, morphology, spectral energy distributions, broadband filter magnitudes, host halo information and weak lensing shear. The size and complexity of cosmoDC2 requires an efficient catalog generation methodology; our approach is based on a new hybrid technique that combines data-driven empirical approaches with semi-analytic galaxy modeling. A wide range of observation-based validation tests has been implemented to ensure that cosmoDC2 enables the science goals of the planned LSST DESC DC2 analyses. This paper also represents the official release of the cosmoDC2 data set, including an efficient reader that facilitates interaction with the data

    Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data

    Get PDF
    84siWe study a class of decaying dark matter models as a possible resolution to the observed discrepancies between early- and late-time probes of the universe. This class of models, dubbed DDM, characterizes the evolution of comoving dark matter density with two extra parameters. We investigate how DDM affects key cosmological observables such as the CMB temperature and matter power spectra. Combining 3x2pt data from Year 1 of the Dark Energy Survey,Planck-2018 CMB temperature and polarization data, Supernova (SN) Type Ia data from Pantheon, and BAO data from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has decayed and the rate with which it converts to dark radiation. The fraction of the decayed dark matter in units of the current amount of dark matter, zetazeta, is constrained at 68% confidence level to be <0.32 for DES-Y1 3x2pt data, <0.030 for CMB+SN+BAO data, and <0.037 for the combined dataset. The probability that the DES and CMB+SN+BAO datasets are concordant increases from 4% for the LambdaLambdaCDM model to 8% (less tension) for DDM. Moreover, tension in S8=sigma8sqrtOmegam/0.3S_8=sigma_8sqrt{Omega_m/0.3} between DES-Y1 3x2pt and CMB+SN+BAO is reduced from 2.3sigmasigma to 1.9sigmasigma. We find no reduction in the Hubble tension when the combined data is compared to distance-ladder measurements in the DDM model. The maximum-posterior goodness-of-fit statistics of DDM and LambdaLambdaCDM are comparable, indicating no preference for the DDM cosmology over LambdaLambdaCDM....partially_openopenChen, Angela; Huterer, Dragan; Lee, Sujeong; Ferté, Agnès; Weaverdyck, Noah; Alonso Alves, Otavio; Leonard, C. Danielle; MacCrann, Niall; Raveri, Marco; Porredon, Anna; Di Valentino, Eleonora; Muir, Jessica; Lemos, Pablo; Liddle, Andrew; Blazek, Jonathan; Campos, Andresa; Cawthon, Ross; Choi, Ami; Dodelson, Scott; Elvin-Poole, Jack; Gruen, Daniel; Ross, Ashley; Secco, Lucas F.; Sevilla, Ignacio; Sheldon, Erin; Troxel, Michael A.; Zuntz, Joe; Abbott, Tim; Aguena, Michel; Allam, Sahar; Annis, James; Avila, Santiago; Bertin, Emmanuel; Bhargava, Sunayana; Bridle, Sarah; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Costanzi, Matteo; Crocce, Martin; da Costa, Luiz; Elidaiana da Silva Pereira, Maria; Davis, Tamara; Doel, Peter; Eifler, Tim; Ferrero, Ismael; Fosalba, Pablo; Frieman, Josh; Garcia-Bellido, Juan; Gaztanaga, Enrique; Gerdes, David; Gruendl, Robert; Gschwend, Julia; Gutierrez, Gaston; Hinton, Samuel; Hollowood, Devon L.; Honscheid, Klaus; Hoyle, Ben; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Maia, Marcio; Marshall, Jennifer; Menanteau, Felipe; Miquel, Ramon; Morgan, Robert; Palmese, Antonella; Paz-Chinchon, Francisco; Plazas Malagón, Andrés; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Schubnell, Michael; Serrano, Santiago; Smith, Mathew; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; To, Chun-Hao; Varga, Tamas Norbert; Weller, Jochen; Wilkinson, ReeseChen, Angela; Huterer, Dragan; Lee, Sujeong; Ferté, Agnès; Weaverdyck, Noah; Alonso Alves, Otavio; Leonard, C. Danielle; Maccrann, Niall; Raveri, Marco; Porredon, Anna; Di Valentino, Eleonora; Muir, Jessica; Lemos, Pablo; Liddle, Andrew; Blazek, Jonathan; Campos, Andresa; Cawthon, Ross; Choi, Ami; Dodelson, Scott; Elvin-Poole, Jack; Gruen, Daniel; Ross, Ashley; Secco, Lucas F.; Sevilla, Ignacio; Sheldon, Erin; Troxel, Michael A.; Zuntz, Joe; Abbott, Tim; Aguena, Michel; Allam, Sahar; Annis, James; Avila, Santiago; Bertin, Emmanuel; Bhargava, Sunayana; Bridle, Sarah; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Costanzi, Matteo; Crocce, Martin; da Costa, Luiz; Elidaiana da Silva Pereira, Maria; Davis, Tamara; Doel, Peter; Eifler, Tim; Ferrero, Ismael; Fosalba, Pablo; Frieman, Josh; Garcia-Bellido, Juan; Gaztanaga, Enrique; Gerdes, David; Gruendl, Robert; Gschwend, Julia; Gutierrez, Gaston; Hinton, Samuel; Hollowood, Devon L.; Honscheid, Klaus; Hoyle, Ben; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Maia, Marcio; Marshall, Jennifer; Menanteau, Felipe; Miquel, Ramon; Morgan, Robert; Palmese, Antonella; Paz-Chinchon, Francisco; Plazas Malagón, Andrés; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Schubnell, Michael; Serrano, Santiago; Smith, Mathew; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Chun-Hao, To; Varga, Tamas Norbert; Weller, Jochen; Wilkinson, Rees
    corecore