80 research outputs found
Antigenic Stimuli do not Influence Thymic B Lymphocytes: A Morphological and Functional Study in Germ-Free and Conventionally Reared Piglets
We have recently reported that thymic B lymphocytes (TBL) are the first B-cell subpopulation
undergoing isotype switching to IgG and IgA during embryonic life. The aim of this study is to
analyze the influence of antigenic stimulation on TBL location and activity using a germ-free
(GF) newborn pig model, in which maternal antibodies and antigens do not affect B-cell
development. Immunohistological analysis showed that TBL were disseminated mainly in the
thymic medulla. There were no differences in the distribution of TBL, both in GF newborn
piglets before and after colonization with Escherichia coli and in older conventionally reared
(CONV) piglets. The number of immunoglobulin (Ig)-secreting cells measured by the ELISPOT
method was not influenced by microflora and food antigens. IgM-positive cells secreting IgM
and CD45RC-positive cells spontaneously producing IgM, IgG, and IgA were detected in
newborn thymus
Bifidobacterium longum CECT 7347 Modulates Immune Responses in a Gliadin-Induced Enteropathy Animal Model
Coeliac disease (CD) is an autoimmune disorder triggered by gluten proteins (gliadin) that involves innate and adaptive immunity. In this study, we hypothesise that the administration of Bifidobacterium longum CECT 7347, previously selected for reducing gliadin immunotoxic effects in vitro, could exert protective effects in an animal model of gliadin-induced enteropathy. The effects of this bacterium were evaluated in newborn rats fed gliadin alone or sensitised with interferon (IFN)-γ and fed gliadin. Jejunal tissue sections were collected for histological, NFκB mRNA expression and cytokine production analyses. Leukocyte populations and T-cell subsets were analysed in peripheral blood samples. The possible translocation of the bacterium to different organs was determined by plate counting and the composition of the colonic microbiota was quantified by real-time PCR. Feeding gliadin alone reduced enterocyte height and peripheral CD4+ cells, but increased CD4+/Foxp3+ T and CD8+ cells, while the simultaneous administration of B. longum CECT 7347 exerted opposite effects. Animals sensitised with IFN-γ and fed gliadin showed high cellular infiltration, reduced villi width and enterocyte height. Sensitised animals also exhibited increased NFκB mRNA expression and TNF-α production in tissue sections. B. longum CECT 7347 administration increased NFκB expression and IL-10, but reduced TNF-α, production in the enteropathy model. In sensitised gliadin-fed animals, CD4+, CD4+/Foxp3+ and CD8+ T cells increased, whereas the administration of B. longum CECT 7347 reduced CD4+ and CD4+/Foxp3+ cell populations and increased CD8+ T cell populations. The bifidobacterial strain administered represented between 75–95% of the total bifidobacteria isolated from all treated groups, and translocation to organs was not detected. These findings indicate that B. longum attenuates the production of inflammatory cytokines and the CD4+ T-cell mediated immune response in an animal model of gliadin-induced enteropathy
Aged mice display altered numbers and phenotype of basophils, and bone marrow-derived basophil activation, with a limited role for aging-associated microbiota
Background: The influence of age on basophils is poorly understood, as well as the effect of aging-associated microbiota on basophils. Therefore, we studied the influence of aging and aging-associated microbiota on basophil frequency and phenotype, and differentiation from basophil precursors. Results: Basophils became more abundant in bone marrow (BM) and spleens of 19-month-old mice compared with 4-month-old mice. Aged basophils tended to express less CD200R3 and more CD123, both in BM and spleen. Differences in microbiota composition with aging were confirmed by 16S sequencing. Microbiota transfers from young and old mice to germ-free recipients revealed that CD11b tended to be lowered on splenic basophils by aging-associated microbiota. Furthermore, abundance of Alistipes, Oscillibacter, Bacteroidetes RC9 gut group, and S24-7 family positively correlated and CD123 expression, whereas Akkermansia abundance negatively correlated with basophils numbers. Subsequently, we purified FcϵRIα+CD11c-CD117- BM-derived basophils and found that those from aged mice expressed lower levels of CD11b upon stimulation. Higher frequencies of IL-4+ basophils were generated from basophil precursors of aged mice, which could be reproduced in basophils derived from germ-free recipients of aging-associated microbiota. Conclusions: Collectively, these results show the influence of aging on basophils. Furthermore, this study shows that aging-associated microbiota altered activation of BM-derived basophils in a similar fashion as observed in BM-derived basophils from aged mice
Antimicrobial activity of Ti-ZrN/Ag coatings for use in biomaterial applications
Severely broken bones often require external bone fixation pins to provide support but they can become infected. In order to reduce such infections, novel solutions are required. Titanium zirconium nitride (Ti-ZrN) and Ti-ZrN silver (Ti-ZrN/Ag) coatings were deposited onto stainless steel. Surface microtopography demonstrated that on the silver containing surfaces, Sa and Sv values demonstrated similar trends whilst the Ra, average height and RMS value and Sp values increased with increasing silver concentration. On the Ti-ZrN/Ag coatings, surface hydrophobicity followed the same trend as the Sa and Sv values. An increase in dead Staphylococcus aureus and Staphylococcus epidermidis cells was observed on the coatings with a higher silver concentration. Using CTC staining, a significant increase in S. aureus respiration on the silver containing surfaces was observed in comparison to the stainless steel control whilst against S. epidermidis, no significant difference in viable cells was observed across the surfaces. Cytotoxicity testing revealed that the TiZrN coatings, both with and without varying silver concentrations, did not possess a detrimental effect to a human monocyte cell line U937. This work demonstrated that such coatings have the potential to reduce the viability of bacteria that result in pin tract infections
- …