3 research outputs found

    Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates

    Get PDF
    [Abstract] In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.This work was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Grant Agreements 785219 and 881603 of the Graphene Flagship. DS acknowledges the support of the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement no. 838902. MP as the recipient of the AXA Bionanotechnology Chair, is grateful to the AXA Research Fund for financial support. This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency-grant no. MDM-2017- 0720. AC thanks Xunta de Galicia for his research grant Atracción de Talento (no. ED431H 2020/17). GR acknowledges funding from RYC-2016-21412. HH acknowledges funding from Juan de la Cierva – Incorporación no. IJC-2018-037396-IXunta de Galicia; ED431H 2020/1

    Planta de producción de ácido fórmico

    Get PDF
    Este proyecto es el diseño de una planta química situada en Igualada con una producción en continuo de 75.000 toneladas año de ácido fórmico. El ácido fórmico se produce mediante una reacción de carbonilación a partir de metanol (100% puro) y monóxido de carbono utilizando como catalizador metóxido de sodio. Posteriormente se realizará una hidrólisis del formiato de metilo obtenido para producir ácido fórmico. A más a más del diseño, también se presenta un estudio de viabilidad y operación de la planta. Se tratan temas de seguridad y medi ambiente con la finalidad de poder aproximar este proyecto téorico a una posible construcción real dentro del marco legal.Aquest projecte és el disseny d'una planta química situada a Igualada amb un producció en continu de 75.000 tones anual de àcid fòrmic. L'àcid fòrmic es produeix mitjançant una reacció de carbonilació a partir de metanol (100% de puresa) i monòxid de carboni utilitzant com a catalitzador metòxid de sodi. Posteriorment es realitzarà una hidròlisi del formiat de metil obtingut per produir àcid fòrmic. A més del disseny, també es presenta un estudi de viabilitat i d'operació de la planta. Es tracten temes de seguretat i medi ambient amb la finalitat de poder aproximar aquest projecte teòric a una possible construcció real dins del marc legal

    Single-Step Functionalization Strategy of Graphene Microtransistor Array with Chemically Modified Aptamers for Biosensing Applications

    Get PDF
    Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.ISSN:1613-6810ISSN:1613-682
    corecore