2,679 research outputs found

    Quantum cosmology of the brane universe

    Get PDF
    We canonically quantize the dynamics of the brane universe embedded into the five-dimensional Schwarzschild-anti-deSitter bulk space-time. We show that in the brane-world settings the formulation of the quantum cosmology, including the problem of initial conditions, is conceptually more simple than in the 3+1-dimensional case. The Wheeler-deWitt equation is a finite-difference equation. It is exactly solvable in the case of a flat universe and we find the ground state of the system. The closed brane universe can be created as a result of decay of the bulk black hole.Comment: 4 pages, revte

    Dark matter component decaying after recombination: lensing constraints with Planck data

    Full text link
    It has been recently suggested~\cite{Berezhiani:2015yta} that emerging tension between cosmological parameter values derived in high-redshift (CMB anisotropy) and low-redshift (cluster counts, Hubble constant) measurements can be reconciled in a model which contains subdominant fraction of dark matter decaying after recombination. We check the model against the CMB Planck data. We find that lensing of the CMB anisotropies by the large-scale structure gives strong extra constraints on this model, limiting the fraction as F<8%F<8\% at 2\,σ\sigma confidence level. However, investigating the combined data set of CMB and conflicting low-zz measurements, we obtain that the model with F2 ⁣ ⁣5F\approx2\!-\!5\% exhibits better fit (by 1.5-3\,σ\sigma depending on the lensing priors) compared to that of the concordance Λ\LambdaCDM cosmological model.Comment: 5 pages, 4 figures; v2: journal version, pages++, figures+

    Dark matter component decaying after recombination: Sensitivity to BAO and RSD probes

    Full text link
    It has been recently suggested~\cite{Berezhiani:2015yta} that a subdominant fraction of dark matter decaying after recombination may alleviate tension between high-redshift (CMB anisotropy) and low-redshift (Hubble constant, cluster counts) measurements. In this report, we continue our previous study~\cite{Chudaykin:2016yfk} of the decaying dark matter (DDM) model adding all available recent baryon acoustic oscillation (BAO) and redshift space distortions (RSD) measurements. We find, that the BAO/RSD measurements generically prefer the standard Λ\LambdaCDM and combined with other cosmological measurements impose an upper limit on the DDM fraction at the level of \sim\,5\,\%, strengthening by a factor of 1.5 limits obtained in \cite{Chudaykin:2016yfk} mostly from CMB data. However, the numbers vary from one analysis to other based on the same Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) galaxy sample. Overall, the model with a few percent DDM fraction provides a better fit to the combined cosmological data as compared to the Λ\LambdaCDM: the cluster counting and direct measurements of the Hubble parameter are responsible for that. The improvement can be as large as 1.5\,σ\sigma and grows to 3.3\,σ\sigma when the CMB lensing power amplitude AL{\rm A_L} is introduced as a free fitting parameter

    Thermal and Non-Thermal Production of Gravitinos in the Early Universe

    Get PDF
    The excessive production of gravitinos in the early universe destroys the successful predictions of nucleosynthesis. The thermal generation of gravitinos after inflation leads to the bound on the reheating temperature, T_{RH}< 10^9 GeV. However, it has been recently realized that the non-thermal generation of gravitinos in the early universe can be extremely efficient and overcome the thermal production by several orders of magnitude, leading to much tighter constraints on the reheating temperature. In this paper, we first investigate some aspects of the thermal production of gravitinos, taking into account that in fact reheating is not instantaneous and inflation is likely to be followed by a prolonged stage of coherent oscillations of the inflaton field. We then proceed by further investigating the non-thermal generation of gravitinos, providing the necessary tools to study this process in a generic time-dependent background with any number of superfields. We also present the first numerical results regarding the non-thermal generation of gravitinos in particular supersymmetric models.Comment: 31 pages, 7 Postscript figures. New references adde

    Non-Thermal Production of Dangerous Relics in the Early Universe

    Get PDF
    Many models of supersymmetry breaking, in the context of either supergravity or superstring theories, predict the presence of particles with weak scale masses and Planck-suppressed couplings. Typical examples are the scalar moduli and the gravitino. Excessive production of such particles in the early Universe destroys the successful predictions of nucleosynthesis. In particular, the thermal production of these relics after inflation leads to a bound on the reheating temperature, T_{RH} < 10^9 GeV. In this paper we show that the non-thermal generation of these dangerous relics may be much more efficient than the thermal production after inflation. Scalar moduli fields may be copiously created by the classical gravitational effects on the vacuum state. Consequently, the new upper bound on the reheating temperature is shown to be, in some cases, as low as 100 GeV. We also study the non-thermal production of gravitinos in the early Universe, which can be extremely efficient and overcome the thermal production by several orders of magnitude, in realistic supersymmetric inflationary models.Comment: 21 pages, 4 Postscript figure

    Dark matter and generation of galactic magnetic fields

    Get PDF
    A new scenario for creation of galactic magnetic fields is proposed which is operative at the cosmological epoch of the galaxy formation, and which relies on unconventional properties of dark matter. Namely, it requires existence of feeble but long range interaction between the dark matter particles and electrons. In particular, millicharged dark matter particles or mirror particles with the photon kinetic mixing to the usual photon can be considered. We show that in rotating protogalaxies circular electric currents can be generated by the interactions of free electrons with dark matter particles in the halo, while the impact of such interactions on galactic protons is considerably weaker. The induced currents may be strong enough to create the observed magnetic fields on the galaxy scales with the help of moderate dynamo amplification. In addition, the angular momentum transfer from the rotating gas to dark matter component could change the dark matter profile and formation of cusps at galactic centers would be inhibited. The global motion of the ionized gas could produce sufficiently large magnetic fields also in filaments and galaxy clusters.Comment: 8 pages, refined version published in Eur. Phys. J. C73, 2620 (2013

    Resolving infall caustics in dark matter halos

    Full text link
    We have found that the phase-space of a dark matter particles assembling a galactic halo in cosmological N-body simulations has well defined fine grained structure. Recently accreted particles form distinctive velocity streams with high density contrast. For fixed observer position these streams lead to peaks in velocity distribution. Overall structure is close to that emerging in the secondary infall model.Comment: 7 pages, 5 figure

    GUT baryogenesis after preheating: numerical study of the production and decay of X-bosons

    Get PDF
    We perform a fully non-linear calculation of the production of supermassive Grand Unified Theory (GUT) XX bosons during preheating, taking into account the fact that they are unstable with a decay width ΓX\Gamma_X. We show that parametric resonance does not develop if ΓX\Gamma_X is larger than about 102mX10^{-2} m_X. We compute the nonthermal number density of superheavy bosons produced in the preheating phase and demonstrate that the observed baryon asymmetry may be explained by GUT baryogenesis after preheating if ΓX\Gamma_X is smaller than about 103mX10^{-3} m_X.Comment: 13 pages, LaTeX file, 3 figures. One reference added and minor change
    corecore