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We canonically quantize the dynamics of the brane universe embedded into the five-dimensional
Schwarzschild–anti-de Sitter bulk space-time. We show that in the brane-world settings the formulation
of the quantum cosmology, including the problem of initial conditions, is conceptually more simple than
in the �3 � 1�-dimensional case. The Wheeler-DeWitt equation is a finite-difference equation. It is exactly
solvable in the case of a flat universe and we find the ground state of the system. The closed brane universe
can be created as a result of decay of the bulk black hole.

DOI: 10.1103/PhysRevLett.95.091301 PACS numbers: 98.80.Qc, 04.70.Dy, 11.25.Wx
Introduction.—Quantum effects almost certainly played
a crucial role in the early universe evolution and in the
process of universe creation. Understanding and study of
quantum cosmology is important not only from the con-
ceptual point of view, but, hopefully, may provide us with
constraints on possible topology of the universe and initial
conditions for the inflationary stage [1–3]. Appropriate
theoretical frameworks that would incorporate all quantum
gravitational effects are yet to be constructed, however.

String theory, eventually, may provide the consistent
approach to the quantum cosmology realm, but the formu-
lation of the string theory on a nontrivial and significantly
Lorentzian space-time is a very complicated and unsolved
task (see, for example, [4] and references therein). That is
why the approaches based on canonical quantization of the
Einstein gravity [5] still prove to be more successful in
addressing the problems of quantum cosmology. Here one
has to adopt a modest approach and restrict consideration
to quantum phenomena below the Plank energy scale.
Quantizing the universe as a whole, one has to resort
further to the ‘‘mini-superspace’’ modeling [1–3,6] in
order to get to definite final results (for a recent interesting
development see, however, Ref. [7] where effective action
for the scale factor was derived integrating out other gravi-
tational degrees of freedom using numerical simulations).

Even then, within the mini-superspace approach, many
conceptual and technical problems remain, such as the
problem of ascribing physical meaning to the wave func-
tion of the universe [6]. Other important issues are the
choice of the boundary conditions that one imposes at
the big-bang point (e.g., ‘‘no-boundary’’ [6], ‘‘tunneling’’
[2], etc.) and the problem of unboundedness of the gravi-
tational action (see, e.g., [8]).

In this Letter we pursue the viewpoint that the presence
of extra dimensions can resolve or relax some of these
problems. Indeed, in the brane-world scenario [9], the
problem of quantum cosmology is replaced by a much
better defined problem of quantum mechanics of the brane,
which moves in the bulk space-time. (Quantization of a
matter on the classical brane has been considered in [10]
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using anti-de Sitter/conformal field theories (CFT) corre-
spondence.) This has several important consequences.
First, one may hope that probabilistic interpretation, initial
and boundary conditions, tunneling, ‘‘scattering,’’ and
‘‘ground’’ states of the universe become better defined
(for discussion see also [11]). Second, one can escape, to
some extent, solving the problems of quantum gravity.
Indeed, the big-bang point, i.e., the point of vanishing
brane size, can be unreachable due to quantum uncertainty.
Thus, quantization of matter in a self-consistently calcu-
lated ‘‘external’’ gravitational field can be sufficient.

The conceptual simplicity of the brane quantum cos-
mology does not imply its ‘‘technical’’ simplicity: one
has to take into account self-consistently the interaction
of the brane with the bulk on both classical and quantum
levels. Here we can benefit capitalizing on the fact that
the dynamics of �3 � 1�-dimensional brane embedded in
�4 � 1�-dimensional bulk is very similar to the dynamics of
self-gravitating shells in conventional �3 � 1�-dimensional
general relativity, which was studied extensively both at
classical [12,13] and quantum levels [14–16]. In this Letter
we generalize the formalism developed in [16] to the case
of the �3 � 1�-dimensional brane universe embedded into
�4 � 1�-dimensional bulk.

We may hope that some results found in frameworks of
brane quantum cosmology may hold even if the universe is
�3 � 1� dimensional. In particular, the distinctive feature of
quantum mechanics of branes is that the differential
Schrödinger (or ‘‘Wheeler-DeWitt’’) equation for the wave
function is replaced by a finite-difference equation [14,16].
This may be a general property of ‘‘true’’ quantum cos-
mology. Note in this respect that finite-difference equations
for the wave function of the universe appear also in the
frameworks of loop-quantum gravity [17].

Hamiltonian description of the classical motion of a
gravitating brane.—We construct the Hamiltonian formal-
ism that describes the motion of a self-gravitating thin shell
of matter starting from the action of �4 � 1�-dimensional
Einstein gravity with bulk cosmological constant. The
brane part of the action contains the term proportional to
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the brane tension � and the term that describes (in the
simplest case) dustlike matter on the brane with the mass�
per unit comoving volume. The total action of the system is

S �
1

4l3Pl

Z
bulk

���
g

p
�	 ��4� R� �TrK�2 � TrK2�

� 8��
Z

brane
d	� �

Z
brane

�������
�ĝ

p
d	d3x̂; (1)

where l�1
Pl is the �4 � 1�-dimensional Planck mass, ĝ is the

induced metric on the brane, 	 is the proper time of
comoving observers in the brane universe, 	 is the bulk
cosmological constant, and �4�R, KAB are the four-
dimensional Ricci scalar and the external curvature of the
spatial section of �4 � 1�-dimensional space-time. We re-
strict ourselves to the case of homogeneous and isotropic
brane, which may describe the open, flat, or closed brane
universe.

For generally covariant systems the Hamiltonian dy-
namics is encoded in a system of constraints [5]. For a
spherically symmetric space without matter, and in any
space-time dimensions, these constraints can be solved
explicitly classically as well as quantum mechanically;
see Ref. [18]. This result can be understood noticing that
in this case gravity has only global degrees of freedom. The
most convenient way to parametrize these global degrees
of freedom is to use the Schwarzschild-like representation
of the metric

ds2 � �F�t; r�dT2 �
dR2

F�t; r�
� R2d�2

3; (2)

where T � T�t; r� and R�t; r� are arbitrary functions of
time and radial coordinates �t; r�, while the function
F�t; r� has the form F�t; r� � k� l3PlM�t; r�R�2 � 	R2,
where k � 0;	1 for the cases of flat, closed, and open
spatial sections, respectively.

In the Hamiltonian formalism the canonical variables
describing the bulk gravitational field are �R;M;PR; PM�.
It turns out that T0 � @T=@r is the momentum conjugate to
M [18]. The conventional constraints of canonical formal-
ism reduce to the set of equations, PR � 0 and M0 �
@M=@r � 0. One can see that if M � const, the metric
(2) coincides with the metric of five-dimensional
Schwarzschild–anti-de Sitter black hole of mass M.

The canonical constraint on the brane is

Ĥ �
3R̂2

l3Pl

�
�������
jF̂j

q
cosh

�
l3PlP̂R̂
3R̂2

�
� ��� �R̂3� � 0; (3)

where a hat denotes the values of corresponding variables
on the brane, e.g., R̂ � R�t; r�jbrane and � � 	1. For the
geometrical meaning of the sign function � see Ref. [12].
At the classical level � is integral of the motion, but the
change of sign is possible at the quantum level [15,16].
Note that the Hamiltonian constraint Eq. (3) does not
describe the most general case (e.g., the Schwarzschild
parameter M can be different on both sides of the brane
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in general situations); rather, the Z2 symmetry was as-
sumed following Ref. [9]. Positive (negative) sign of �
corresponds to the positive (negative) brane tension in the
case of the classical regime of Randall-Sundrum cosmol-
ogy. For the discussion of general brane Hamiltonian in the
quantum case see Refs. [15,16].

The equation of motion for R̂ found from the Hamil-
tonian (3) is dR̂=d	 � �

�������
jFj

p
sinh�3l3PlP̂R=R̂

2�, which,
upon substitution into (3), gives

�dR̂=d	�2

R̂2
�
k

R̂2
�
l6Pl��� �R̂3�2

9R̂6
�
l3PlM

R̂4
� 	: (4)

Being written in this form, the equation of motion of the
brane resembles closely the Friedmann equation [19], in
which the density of matter on the brane �m � �=R̂3

enters quadratically at small R̂, the presence of nonzero
bulk black hole mass M results in the effective ‘‘dark
radiation’’ contribution �dr � M=R̂4, and the effective
cosmological constant on the brane is a certain combina-
tion of the bulk cosmological constant and the brane ten-
sion 	�3�1� � l6Pl�

2=9 � 	. Note, however, that Eq. (4) is a
‘‘square’’ of the true dynamical equation, and important
information encoded in � is lost. Therefore, its use can be
inappropriate in some situations, especially in the quantum
regime.

Quantum dynamics of the brane universe.—In canoni-
cally quantized theory the Hamiltonian constraint (3) is
replaced by an equation on the wave function of the uni-
verse, Ĥ� � 0, which in the present case is a differential
equation of infinite order. This infinite-order equation takes
a simple form after the canonical transformation v � R̂3;
Pv � P̂R̂=�3R̂

2�, which brings the Hamiltonian Ĥ into the
form

Ĥ �
3v2=3

l3Pl

�
�������
jF̂j

q
coshfl3PlPvg � ��� �v�: (5)

In the new variables, after quantization Pv ! �i@=@v, the
hyperbolic cosine that enters Ĥ becomes an operator of
finite shift along the imaginary axis, exp�l3PlPv���v� �
��v� il3Pl�. Substituting this into Ĥ� � 0 we find the
following finite-difference equation, which determines
the quantum dynamics of a self-gravitating brane universe:

v2=3F1=2f��v� il3Pl� � ��v� il3Pl�g

� 2
3l

3
Pl��� �v���v� � 0: (6)

We have chosen a particular operator ordering in the above
equation. The general case can be studied along the lines of
Ref. [16]. A different choice of operator ordering changes
some details but does not change qualitatively the results
presented below.

Since the shift of the argument of the wave function is
along the imaginary axis, one has to consider the above
equation in the complex plane, or, more precisely, on the
corresponding Riemanian surface. Indeed, the function
1-2
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F1=2 is a branching function on the complex plane. The two
branches, F1=2 � 	

����
F

p
, correspond to the two possible

choices of �. Therefore, if one finds the solutions of the
above equation on the Riemann surface, the wave function
� is defined simultaneously in � � �1 and � � �1
domains.

In order to understand qualitatively the behavior of the
solutions of Eq. (6), we start with an analysis of the
distances much larger than lPl. In this limit we can expand
��v	 il3Pl� in powers of the shift parameter, ��v	 il3Pl� ’

��v� 	 il3Pl�
0�v� � 1

2 l
6
Pl�

00�v� � � � � . In the first nontri-
vial order Eq. (6) reduces to (we restrict ourselves to the
case � � 1 here)

�00 �
2

l6Pl

�
1 �

l3Pl��� �v�

3v2=3F1=2

�
� � 0; (7)

which is a Schrödinger-like equation for particle motion in
a potential

U � 1 �
l3Pl��� �v�

3�kv4=3 � 2GMv2=3 � j	jv2�1=2
: (8)

For large v � R̂3 the potential approaches a constant,U !

1 � l3Pl�=�3
�������
j	j

p
�. If l3Pl� > 3

�������
j	j

p
the wave function be-

haves in the limit of large R3 as a flat wave that describes an
expanding or contracting universe.

Exactly solvable case of the flat universe.—To make
more detailed analysis of the quantum mechanics of the
brane, e.g., to study its spectrum, one needs to impose
boundary conditions at the origin. At first sight the issue
of boundary conditions at the big-bang point v � 0 looks
conceptually simpler for the brane universe. Indeed, since
the scale factor of the universe is now just a position of the
brane moving in the external space (rather than purely
gravitational degree of freedom), this is just the question
of boundary conditions on the wave function at the origin
of spherical coordinates. However, in the region v� l3Pl
one cannot expand Eq. (6) in powers of lPl, and the intu-
ition based on Eq. (7) is not applicable anymore. Instead,
one has to deal with the exact finite difference Eq. (6). (We
assume that the mini-superspace model based on the thin-
wall approximation is still valid in the limit of small v.)

The finite-difference equations and, in particular, Eq. (6)
possess a number of interesting general properties. Being
understood as infinite-order differential equations, they
have to be supplemented with an infinite set of boundary
conditions. At the same time, starting from a single par-
ticular solution �0 one can generate an infinite set of
solutions simply by multiplying �0�z� by a function
C�z�, which is periodic with respect to the finite shift
parameter [i.e., C�z� il3Pl� � C�z� in the case of Eq. (6)].
The appropriate methods of analysis of finite-difference
equations are discussed in Refs. [16,20,21].

In order to illustrate these methods, it is convenient to
consider the special case when Eq. (6) is exactly solvable,
namely, the case of the flat universe k � 0 and zero bulk
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Schwarzschild massM � 0. For this choice of parameters,
Eq. (6) takes the form

��v� il3Pl� � ��v� il3Pl� �
2l3Pl

3
�������
j	j

p
�
��

�
v

�
��v� � 0;

(9)

which coincides with the finite-difference analog of the
quantum-mechanical problem of motion in the Coulomb
potential [20]. A general solution of Eq. (9) is given by (up
to multiplication by an arbitrary il3Pl —periodic function)
��S� � ve�&vF �1 � iv; 1 � ':2:1 � e�2i&�, where F is
the hypergeometric function. Parameters & and ' are
defined by relations cos& � l3Pl�=�3

�������
j	j

p
� and ' sin& �

l3Pl�=�3
�������
j	j

p
�.

As is usual in quantum mechanics, the single solution
can be selected only when the proper set of boundary
conditions is chosen. The correct boundary conditions
can be determined from the requirement of vanishing of
the probability flow J � i��yĤ� � �Ĥ�y� at v � 0. In
the case of Eq. (9) this reduces to the set of conditions [21]
��2n��0� � 0, n � 0; 1; . . . .

Similar to the conventional quantum mechanics with the
Coulomb potential, there are bound states and continuous
spectrum. Using the above boundary conditions as well as
appropriate conditions at infinity, one can see that bound
states exist when the quantization condition

	�3�1� �
l6Pl�

2

9
� 	 � �

4�2

9n2 ; n � 1; 2; . . . ;

is satisfied. It relates the effective brane cosmological
constant 	�3�1� to the matter density on the brane. In
particular, the ground state of the universe corresponds to
n � 1. The wave functions of continuous spectrum (l3Pl� >
3

�������
j	j

p
, which corresponds to the positive effective cosmo-

logical constant on the brane) contain both the collapsing
(ingoing wave) and expanding (outgoing) branes. Thus, in
the case of continuous spectrum, the wave function of the
universe corresponds to the so-called ‘‘big bounce’’ situ-
ation. One can consider also transitions between the bound
states and the states from continuous spectrum (e.g., an
expanding brane universe can result from the excitation of
the ground state). However, the analysis of perturbations of
the spherically symmetric system considered above goes
beyond the mini-superspace approximation.

Tunneling from the bound states.—In order to study
qualitatively the more general cases when the bulk
Schwarzschild mass is not zero, let us come back to the
analysis of the truncated Eq. (7). The behavior of the
potential U for the cases k � 0 and/or M � 0 is shown
in Fig. 1. One can see that if l3PlM � �	�3�1��

�1 there is a
potential barrier, which separates the regions of bound and
unbound motion of the brane. This means that the spectrum
of quantum states of the brane can contain, apart from the
discrete and continuous part, also ‘‘resonances.’’ In this
case the expanding brane universe is the result of decay (or
1-3
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FIG. 1. The potential U (8) for different choices of parameters.
The potential is singular at the gravitational radius of the bulk
Schwarzschild–anti-de Sitter black hole when M � 0.
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tunneling) of an almost stable state localized near the
origin. The main difference of the tunneling states consid-
ered here from the �3 � 1�-dimensional ones is that in the
�3 � 1�-dimensional case the choice of the boundary con-
ditions at R̂ � 0 is ambiguous and the existence of the
tunneling state is, in fact, just postulated [2].

Discussion.—In this Letter we have constructed quan-
tum cosmology of the brane universe and have shown that
it has several distinctive features. In particular, one can
avoid the conceptual problems related to the interpretation
of the wave function of the universe. Indeed, in the brane-
world setup one does not quantize pure gravity, but rather
deals with quantum mechanics of a matter source (brane)
moving through higher-dimensional space-time. The prob-
lem of the choice of boundary conditions on the wave
function of the universe is also free from ambiguities:
one simply has to impose the usual quantum-mechanical
conditions on the wave function at the origin of coordi-
nates. This allows for the detailed analysis of bound states,
continuous spectrum, and tunneling states, where creation
of the universe from ‘‘nothing’’ can be interpreted as a
decay of a bound state resonance.

When gravitational self-interaction of the brane universe
is important, as, for example, in the setup of the Randall-
Sundrum cosmology studied here, one has to correctly
account for the bulk-brane interaction not only classically,
but also on the quantum level. As a result, the classical
brane Hamiltonian constraint (3) becomes after quantiza-
tion a finite-difference equation (6).

Although the appearance of finite-difference equations
is a novel feature of the quantum brane cosmology, the
analysis of the boundary conditions and of the wave func-
tions of discrete and continuous spectra can be carried in a
way similar to the one used in conventional quantum
mechanics. From the point of view of quantization of
gravitating systems, the appearance of a nonlocal equation
(with nonlocality at the Plank scale) is natural to expect.
Such equations appear in several other models (see, e.g.,
09130
[22,23]). It implies a deformation of the Lorentz symmetry
and generalized uncertainty principle [24,25].
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